Hints and Solutions: Determine the Polynomial

Mathew A. Johnson
March 6, 2009

First, let me restate the problem in a readable form: I have a polynomial $P(x)$ with positive integer coefficients. I claim that if you ask for the value of the polynomial at cleverly chosen points, then you can completely determine the polynomial from this information. How is this done?

1 Hint \# 1

Choose as your first point something that will give you an upper bound on the size of each coefficient. Now what???

2 Harder Version: (Due to Kabe Moen and Jermey Martin at University of Kansas)

Come up with a way to do this (theoretically) by determining the value at only one point?

3 Solution

As your first point, choose $x=1$. Since all the coefficients of $P(x)$ are positive and integers, we know $P(1)$ is greater than or equal to any of these coefficients. Now that you have $P(1)$, let 10^{d} be the least power of 10 greater than $P(1)$. For your second point, choose $x=10^{d}$. Then you can read off the coefficients by reading $P\left(10^{d}\right)$ from right to left, taking d digits at a time. Then each grouping of d digits corresponds to a coefficient of x. To see how this works, it is probably best to see an example.

Example 1. Suppose $P(1)=3,103$. Then your next point should be $x=10,000$, from which you get

$$
P(10,000)=101,000,000,023,000
$$

Keeping in mind that no coefficient can be larger than 3103, you can read the coefficients of each power of x by taking four numbers at a time, starting from left to right:

$$
101|0000| 0002 \mid 3000
$$

It follows that $P(x)=101 x^{3}+0 x^{2}+2 x+3000$.

4 Solution to Harder Version

Thanks to Kabe Moen and Jermey Martin for providing the following interesting solution.
The easy way to do this is to determine the value of P at a given transcendental number, say $x=\pi$. Once you have the EXACT form of $P(\pi)$ (not just a truncated decimal approximation), then since π is transcendental you can just read off the (unique) coefficients of P.

For example, if $P(\pi)=10 \pi^{3}+2 \pi^{2}+1$, then it must be the case that $P(x)=10 x^{3}+2 x+1$.
Admittedly this solution is not very practical, but it is very interesting from a theoretical standpoint!!

