Hints and Solutions: Which Number is Larger?

Mathew A. Johnson

March 6, 2009

First, let me restate the problem in a readable form: Which number is larger?

$$
e^{\pi} \text { or } \pi^{\mathrm{e}} ?
$$

1 Hint \# 1

Consider the function $f(x)=x^{1 / x}$. Convince yourself that the above problem is really the same as asking which of the numbers $f(e)$ and $f(\pi)$ is largest. Remember, you don't really have the problem solved until you can justify any hints that I give you!

2 Hint \# 2

If the first hint didn't help, maybe this will help shed some light. Consider the function $f(x)=\frac{\ln x}{x}$. Can you classify its critical points? How does this essentially solve the problem?

3 Hint \# 3

If neither of the above hints helped, try considering the function $f(x)=e^{x}-x^{e}$. How does this help?

4 Solutions

4.1 Solution \#1

This solutions is based off of the first hint above. Notice that if we take the $\pi e^{t h}$ root of the statement $e^{\pi} O \pi^{e}$, it yields $e^{1 / e} O \pi^{1 / p i}$ where O stands for either $>$ or $<$ or $=$. So, if we define $f(x)=x^{1 / x}$, we just need to see which value is larger: $f(e)$ or $f(\pi)$. Well, taking logs we have $\ln (f(x))=\frac{\ln x}{x}$ so differentiating gives

$$
\begin{aligned}
\frac{f^{\prime}(x)}{f(x)}=\frac{1}{x^{2}}-\frac{\ln x}{x^{2}} & \\
& =\frac{1-\ln x}{x^{2}}
\end{aligned}
$$

and hence

$$
f^{\prime}(x)=x^{1 / x}\left(\frac{1-\ln x}{x^{2}}\right)
$$

So, $f^{\prime}(x)=0$ exactly when $x=e$. Now, using the first derivative test, we see that e is a (global) maximum for this function and hence $f(e)>f(\pi)$, i.e. $e^{\pi}>\pi^{e}$.

4.2 Solution \#2

Notice that in the above solution, all the work was showing that the function $\ln (f(x))=\frac{\ln x}{x}$ has a (global) maximum at $x=e$. To see another way why this solves the problem, notice that

$$
\begin{array}{rll}
e^{\pi} & O & \pi^{e} \\
\Rightarrow \pi \ln (e) & O & e \ln (\pi) \\
\Rightarrow \frac{\ln (e)}{e} & O & \frac{\ln (\pi)}{\pi}
\end{array}
$$

where again O stands for either $>$ or $<$ or $=$. So, another way of restating this problem is to see which of the above quantities is larger.

4.3 Solution $\# 3$

Thanks to Kabe Moen from the University of Kansas for pointing out this solution!!
In this solution, we follow hint $\# 3$ and consider the function $f(x)=e^{x}-x^{e}$ for $x>0$. To solve the problem, we must determine whether $f(\pi)$ is positive or negative. To this end, we begin by locating the critical points of this function f. Taking the derivative we get

$$
f^{\prime}(x)=e^{x}-e x^{e-1}=e\left(e^{x-1}-x^{e-1}\right)
$$

Clearly then $f^{\prime}(e)=0$ and $f^{\prime}(1)=0$. I claim these are in fact the only critical points of f. To see this, notice that $f^{\prime}(x)=0$ is equivalent with the equation

$$
x-1=(e-1) \ln (x)
$$

Since the left hand side is always concave down and increasing, this equation has at most two solutions. Moreover, it is not hard to find these solutions: one is at $x=1$ and the other at $x=e$ thus justifying our claim.

Now, recall we are trying to determine the sign of the number $f(\pi)$. Up to this point, we have shown $f(e)=0, f^{\prime}(e)=0$, and $f^{\prime}(x) \neq 0$ for all $e<x<\infty$. We now want to show that $f^{\prime}(x)$ is actually positive for $x>e$. I see at least two ways of doing this. For the first, notice that $1<\ln (2)<2$ implies that

$$
(2 e)-1>\ln (2) e-\ln (2)
$$

Thus,

$$
f^{\prime}(2 e)=e\left(e^{2 e-1}-(2 e)^{e-1}\right)>0
$$

Another way you could do this is to notice

$$
\lim _{x \rightarrow \infty} f^{\prime}(x)=\lim _{x \rightarrow \infty}\left(e^{x}-e x^{e-1}\right)=+\infty
$$

Since $f^{\prime}(x) \neq 0$ for any $x>e$, this implies that $f^{\prime}(x)>0$ for all $x>e$.
The rest of the solution is now straightforward. Since $f(e)=0$ and $f^{\prime}(e)>0$ for all $x>e$, we have that $f(x)>0$ for all $x>e$. In particular, $f(\pi)>0$ and hence

$$
e^{\pi}>\pi^{e}
$$

