
An Introduction to Stability Theory for Nonlinear PDEs

Mathew A. Johnson1

Abstract

These notes were prepared for the 2017 Participating School in Analysis of PDE:
Stability of Solitons and Periodic Waves held at KAIST in Daejeon, Korea during
August 21 - August 25, 2017. The goal here is to introduce participants to some of the
basic methodologies and techniques for obtaining spectral, linear and nonlinear stability
results for nonlinear wave solutions to special classes of PDEs, with explicit examples
being worked out whenever possible.
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1 Introduction

The purpose of this summer school is to introduce students and early career researchers
to various aspects of the stability theory for special classes of solutions in some important
nonlinear partial differential equations (PDEs). Many times, this theory mimics classical
finite-dimensional ODE theory, while making appropriate modifications accounting for the
fact that the state space for PDEs is inherently infinite dimensional. Consequently, we will
begin with a very brief review of finite-dimensional ODE stability theory.

To begin, consider a nonlinear ODE of the form

u̇ = F (u), u = u(t) ∈ Rn (1)

where here F : Rn → Rn is sufficiently smooth and u̇ refers to the derivative of u with
respect to the dependent variable t. Basic results in ODE theory guarantee that for each
initial condition u0 ∈ Rn, there will exist a unique solution u(t;u0) of (1) with u(0;u0) = u0

that exists at least locally, i.e. for at least |t| � 1. The basic question in stability theory is
the following:

Question: If u0 ∈ Rn is a fixed point of F , so that F (u0) = 0, and if |u1 − u0| � 1, will
u(t;u1) remain near u0 for all t > 0? If not, what happens?

Observe that by continuous dependence, we know that since |u1 − u0| � 1 we will have
|u(t;u1)−u0| � 1 for at least a short amount of time. A natural and often used method to
determine if u(t;u1) stays close to u0 for all time t > 0 is to first approximate the dynamics
of (1) near u0 by studying a suitable approximating system. This leads to the process of
linearization.

To this end, note that we may write, for so long as it exists,

u(t;u1) = u0 + v(t)

so that now u(t;u1) is considered as a perturbation of u0. From (1), the function v(t) solves
the initial value problem (IVP)

v̇ = F (u0 + v), v(0) = u1 − u0 (2)

Noting that we can write

F (u0 + v) = F (u0) +DF (u0)v + (F (u0 + v)− F (u0)−DF (u0))︸ ︷︷ ︸
O(|v|2)

,

where here DF is the n × n matrix valued derivative of F at u0, it follows v satisfies an
IVP of the form

v̇ = DF (u0)v +O(|v|2), v(0) = u1 − u0, (3)
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where we have used here the fact that F (u0) = 0 by construction. Using Duhamel’s formula
or, equivalently, variation of parameters, we can rewrite the above evolution equation for
the perturbation v as the implicit integral equation

v(t) = eDF (u0)tv(0) +

∫ t

0
eDF (u0)(t−s)O(|v(s)|2)ds

where here eDF (u0)t is the n × n matrix exponential of the linear operator DF (u0). In
particular, for every v(0) ∈ Rn the vector eDF (u0)tv(0) is the unique solution to the linear
system

v̇ = DuF (u0)v, v(0) = u1 − u0. (4)

Since the O(|v|2) are small compared to the DuF (u0)v terms when v is small, we expect that
so long as |v(t)| remains small that solutions of (2) will be well approximated by solutions
of (4), the solutions of which are governed completely by the eigenvalues of the matrix
DF (u0). In particular, if λ is an eigenvalue of DF (u0) with eigenfunction w ∈ Rn then the
function v(t) = eλtw is a solution of (4). It follows that if all the eigenvalues of DF (u0)
have strictly negative real part, then all the solutions of (4) decay exponentially as t→∞,
while if there is any eigenvalue with positive real part then there exists some solution of
(4) that blows up as t → ∞. Finally, if DF (u0) has an eigenvalue on the imaginary axis
iR, then (4) has a solution that remains bounded for all t ∈ R, being oscillatory and not
decaying for large time.

A natural question, and one of the key problems in classical ODE stability theory, is
when the predictions from the linearized system (4) carry over to the nonlinear system
(3). In classical ODE theory, the simplest result in this direction is the Stable Manifold
Theorem. To motivate this result, suppose for a moment that all eigenvalues of DF (u0) are
semisimple, i.e. their algebraic multiplicity agrees with their geometric multiplicity (so no
Jordan blocks). Then we can express

eLt =
k∑
j=1

eλjtΠj

where the Πj are the spectral projections onto the eigenspaces associated with the k distinct
eigenvalues of DF (u0). It follows that if ω = maxj <(λj) then there exists a constant C > 0
such that ∣∣eLt∣∣ ≤ Ceωt
for all t > 0. In particular if <(λj) < −γ for some constant γ > 0 and all j then every
solution of (4) will satisfy |v(t)| ≤ Ce−γt|v(0)| for all t > 0. The fact that this observation
carries over for the nonlinear equation (3), even when DF (u0) may admit Jordan blocks,
follows by the following fundamental result.

Theorem 1 (Stable Manifold Theorem). Suppose there exists a constant γ > 0 such that
every eigenvalue λ ∈ C of the matrix DF (u0) satisfies <(λ) < −γ. Then there exists

3



constants δ > 0 and C ≥ 1 such that if |v0| < δ then the associated unique solution v(t) of
(3) exists for all t > 0 and satisfies the exponential decay estimate

|v(t)| ≤ Ce−γt|v(0)|

for all t ≥ 0. In particular, u0 is an asymptotically stable solution of (1).

Remark 1. By essentially taking t→ −t in the proof of the Stable Manifold Theorem, one
can show that if DF (u0) has an eigenvalue with strictly positive real part, then u0 is an
unstable solution of (1): there exists an ε > 0 such that for every δ ∈ (0, ε) there exists
initial data v(0) with |v(0)| < δ such that the associated solution v(t) satisfies |v(T )| > ε
for some finite T > 0. This result is known as the Unstable Manifold Theorem

Remark 2. We note that if DF (u0) has an eigenvalue on the imaginary axis, one must work
harder in order to determine the stability of u0: it may be stable or unstable depending on
the particular nonlinearity. In this case, one usually either uses a center manifold reduction,
or tries the study the stability of u0 through energy (i.e. Lyapunov) methods instead.

In these notes, we are interested in extending the above results to be suitable for PDE
applications. Some of the initial challenges include:

(1) In the PDE case, establishing that the PDE can be solved, even locally in time, for
initial data “near” the background wave u0 is a much more delicate matter. One thing
that complicates this is evolutionary PDE’s of the form ut = F (u), where here F may
be a nonlinear differential operator with possibly non-constant coefficients, describe
the evolution of functions in infinite dimensional vector spaces. Consequently, there
are many non-equivalent topologies one may use to define what “close” means, and
identifying the appropriate topology in which to work is not always easy.

(2) The linearized operator DF (u0) is now generally a differential operator with coeffi-
cients depending on the function u0. Describing the spectral properties of DF (u0)
then takes significantly more care, since linear operators on infinite dimensional vector
spaces may fail to be invertible in more ways than losing injectivity, i.e. there maybe
more than eigenvalues we have to worry about. Such issues are discussed in Section
2 below. Furthermore, turning spectral properties into decay bounds on the linear
solution operator2 eLt also becomes a much more delicate matter, and is discussed in
Section 3.3.

(3) In PDE’s modeling extended systems, i.e. defined on the infinite line R, the linearized
operator often does not have a spectral gap, i.e. the spectrum of DF (u0) includes
points on the imaginary axis. This is often due to the presence of continuous symme-
tries in the governing PDE, such as the PDE being translationally invariant, which
causes the linearized operator DF (u0) to fail to be invertible: see Remark 6 in Section

2In fact, since differential operators are unbounded from spaces into themselves, it is not a-priori clear
how to even define eLt.
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3.2.2. Dealing with this lack of spectral gap is an important matter, and something
that is fundamental to the stability analysis of PDE’s. We will discuss some methods
in this direction in Section 4.2 and Section 4.3 below.

Acknowledgments: I would like to thank Soonsik Kwon for organizing such a wonderful
summer school workshop at KAIST, and for inviting me to be a mentor for the participants
involved. I am also grateful to Kihyun Kim for pointing out many typos in the original
version of these notes. These notes were written while the author was supported by NSF
grant DMS-1614785.

Disclaimer: These notes were extracted from a class I taught during the Fall 2015 semester
at the University of Kansas. The primary text for that course was the book [KP] by Todd
Kapitula and Keith Promislow. As such, while these notes do not follow [KP] verbatim,
they were heavily influenced it. Most everything in these notes can be found in [KP], and,
due to time constraints when writing these notes, I make no attempt to flush out precise
page or theorem number references. Also, there are hundreds of additional references that
should be cited throughout these notes, but for the same reasons they are not listed here.
My apologies to all those who should be cited, and to anyone reading these notes.

2 Spectral Theory: Survey of Results

In this section, we briefly discuss the relevant definitions from spectral theory. We will then
discuss the nature of the spectrum for classes of differential operators that arise naturally
in stability theory for nonlinear waves.

Consider an nth-order, scalar linear differential operator of the form

L = ∂nx + an−1(x)∂n−1
x + an−2(x)∂n−2

x + . . .+ a1(x)∂x + a0(x) (5)

where here the functions aj are sufficiently smooth. In PDE applications, such operators
arise naturally as the linearizations of a PDE about a some nonlinear wave solution, where
the coefficient functions aj depend on the background wave. Since for this workshop we are
interested in the stability of solitary and periodic waves, we will briefly discuss the spectral
properties of operators of the form L in when the aj are either exponentially localized or
spatially periodic, corresponding to the cases when L is the linearization about a solitary
or periodic wave, respectively.

We begin with some basic definitions.

Definition 1. Suppose L acts on a complex Banach space X. The resolvent set of L on
X, denoted by ρ(L) is the set of all λ ∈ C where L − λI is invertible with bounded (i.e.
continuous) inverse. Here, I denotes the identity operator. Further, the spectrum of L on
X, denoted σ(L) is defined as σ(L) := C \ ρ(L). Finally, the λ ∈ σ(L) is an eigenvalue of
L if Ker(L− λI) 6= {0}, i.e. if there exists a v ∈ X \ {0} such that Lv = λv..
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Remark 3. Note the choice of the Banach space X on which L acts is crucial in our
understanding of the the spectrum of L. As we will see below, the spectral properties of a
given operator can change dramatically if one changes the space X.

In many applications, it is useful to further decompose the spectrum of L. There are
several non-equivalent ways of doing this, all of which appear in the literature. For the
purpose of this lecture, we will use the following definition.

Definition 2. Given a linear operator L acting on a complex Banach space X as above,
the point spectrum of L, denoted σp(L) (on X) is the set of all isolated eigenvalues of L (on
X) with finite multiplicities. Further, the essential spectrum is σess(L) := σ(L) \ σp(L).

As we will see, in stability theory the point and essential spectrum give drastically
different information concerning the dynamics near a given nonlinear wave. In what fol-
lows, we discuss spectral properties for classes of differential operators often occurring in
applications, as well as how the spectrum may be calculated.

2.1 BVP with Separated Boundary Conditions

First, let’s consider a differential operator of the form

L = ∂2
x + a1(x)∂x + a0(x) (6)

where a0, a1 are some given smooth, real-valued functions and let T > 0 be finite. Consider
the spectral problem

Lv = λv, x ∈ (−T, T ) (7)

equipped with homogeneous Dirichlet boundary conditions

v(−T ) = v(T ) = 0. (8)

Precisely, we are considering L as a densely defined operator on L2(−T, T ) with densely
defined domain D(L) := H1

0 (T, T ) ∩H2(−T, T ). Our goal here is to characterize σ(L).
Our first observation is that the operator L is self-adjoint with respect to the weighted

inner product

〈f, g〉 :=

∫ T

−T
f(x)g(x)ρ(x)dx,

where the weight function is ρ(x) := exp
(∫ x

0 a1(z)dz
)
. Consequently, σ(L) ⊂ R.

Next, we search for eigenvalues of L, i.e. we search for λ ∈ C such that there exists a
non-trivial solution of (7) satisfying the B.C.’s at ±T . To this end, let φ± be the unique
solutions of the IVP 

Lv = λv, x ∈ (−T, T )

v(±T ) = 0

v′(±T ) = 1
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and note that for each λ ∈ C the function φ−(·;λ) satisfies the B.C. at x = −T , while the
function φ+(·;λ) satisfies the B.C. at x = T . Observe that if φ± are linearly dependent for
some λ ∈ C, then there exists a constant C > 0 such that

φ−(x;λ) = Cφ+(x;λ) ∀x ∈ [−T, T ]

so that, in particular, the function φ+ provides a non-trivial solution of (7) satisfying both
boundary conditions at x = ±T , and hence λ ∈ σp(L). Note if we define the Wronskian3

E(λ) := det

(
φ+(x;λ) φ−(x;λ)
φ′+(x;λ) φ′−(x;λ)

)
then the functions φ±(·;λ) are linearly dependent precisely on the zero set of E. It can be
easily checked that E(λ) is an entire function of λ, and that the multiplicity of λ as a root
of E agrees with the algebraic multiplicity of λ as an eigenvalue of L. By basic results in
complex analysis, it follows that the eigenvalues of L are isolated with no finite accumulation
point, and all eigenvalues necessarily have finite algebraic (and hence geometric) multiplicity.

Remark 4. Note that if L has constant coefficients a1, a0 ∈ R then σp(L) can be found
through elementary ODE techniques. Indeed, for every λ ∈ C one can write the general
solution to the second-order ODE Lv = λv and determine for which λ this solution satisfies
the appropriate boundary conditions.

Next, I claim that if λ /∈ σp(L) then λ ∈ ρ(L). To see this, note that if E(λ) 6= 0 then
φ±(·;λ) provides two linearly independent solutions of the 2nd order homogeneous ODE
Lv + λv = 0. Given any f ∈ L2(−T, T ), one can now show that the unique solution v of
the equation

Lv − λv = f

that satisfies the B.C.’s (8) at ±T is given explicitly by

v(x;λ) =
φ+(x;λ)

E(λ)

∫ x

−T
f(z)φ−(z;λ)dz +

φ−(x;λ)

E(λ)

∫ T

x
f(z)φ+(z;λ)dz

=

∫ T

−T
G(x, z;λ)f(z)dz,

where G here is the Green’s function, given explicitly as

G(x, z;λ) =
φ+(x;λ)φ−(z;λ)χ(−T,x)(z) + φ−(x;λ)φ+(z;λ)χ(x,T )(z)

E(λ)

where χ(a,b) denotes the characteristic function of the set (a, b). Since a simple application
of Hölder’s inequality implies that

‖v(x;λ)‖L2(−T,T ) ≤ C(λ)‖f‖L2(−T,T ),

3It is easily checked that the determinant defining E(λ) is independent of x. However, in applications
it is sometimes helpful to have the flexibility in choosing at what x ∈ [−T, T ] to do the evaluation. This
function E(λ) can also be identified as the so-called “Evans function” for the given boundary value problem.
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for all λ ∈ C with E(λ) 6= 0, i.e. λ /∈ σp(L), it follows that (L− λI)−1 is a bounded linear
operator on L2(−T, T ), and hence that λ ∈ ρ(L), as claimed.

It is important to note that the fact that σ(L) = σp(L) in the above example holds in
much more generality. Indeed, it holds for general nth-order linear differential operators
defined bounded intervals [a, b] ⊂ R, when equipped with n separated boundary conditions
at x = a and x = b. It can even be seen to hold in higher dimensions through the use of
the Rellich-Kondrachov compactness theorem. The fact that σ(L) ⊂ R does not generally
extend to such operators, but holds here due to the fact that the second-order operator L
is a Sturm-Liouville operator. Furthermore, using the fact that L is second order, we have
the following version of Sturm’s Oscillation Theorem that is often helpful in studying σp(L)
in such cases.

Theorem 2 (Sturm’s Oscillation Theorem for BVP’s with Separated Boundary Condi-
tions). Let L be a second-order, linear differential operator of the form (6), considered as
an operator on L2(a, b) with separated boundary conditions at x = a and x = b. Then σp(L)
consists of infinitely many simple eigenvalues which can be numerated in strictly decreasing
order as

λ0 > λ1 > λ2 > . . . , lim
n→∞

λn = −∞.

Further, an eigenfunction associated with λj has exactly j zeroes on (a, b), all of which are
simple.

2.2 Exponentially Localized Coefficients

Next, we consider the case when the functions aj are exponentially localized in space, i.e.
there exists an r > 0 and constants a0, a1 . . . , an−1 ∈ R such that

lim
x→∞

er|x||aj(x)− aj | = 0

for all j = 0, 1, 2, . . . , n − 1. Here, we consider L as acting on the Lebesgue space L2(R)
with densely defined domain Hn(R) (a Sobolev space). Such operators arise naturally when
linearizing a PDE defined on all of R about a wave that is asymptotically constant, such as
a solitary wave or a front. We first discuss the essential spectrum of L. The key result here
is known as the Weyl Essential Spectrum Theorem which, in this context, roughly states
that the essential spectrum of L is controlled entirely by the behavior of the operator at
spatial infinity. To make this precise, define the constant-coefficient asymptotic operator

L∞ := ∂nx + an−1∂
n−1
x + . . .+ a1∂x + a0

We then have the following key result.

Theorem 3 (Weyl Essential Spectrum Theorem). With L and L∞ as above, we have

σess(L) = σess(L∞).
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The proof of this theorem relies on the fact that since the coefficient functions aj(x)
of L are exponentially localized, the operator L is a relatively compact perturbation of the
operator L∞. Since functional analysis tells us the essential spectrum of an operator is
invariant under relatively compact perturbations, the result follows.

Remark 5. In the case where the functions aj are exponentially localized to different limit-
ing values a±1 , a

±
0 at ±∞, such as what appears when linearizing a PDE about a front solu-

tion, the essential spectrum of L may then be a subset of C with non-zero two-dimensional
measure. Consequently, Weyl’s Essential Spectrum Theorem becomes more complicated in
that scenario. Nevertheless, if we define asymptotic operators L±∞ at x = ±∞, respec-
tively, one can show that the one-dimensional curves σess(L−∞) and σess(L+∞), known as
the “Fredholm boundaries” of L, form the boundary of the essential spectrum of L. Most im-
portantly for stability purposes, if the essential spectrum for both asymptotic operators L±∞
lies in the left half plane, then the essential spectrum of L also lies in the left half plane.
Consequently, for stability purposes it is enough to just calculate the Fredholm boundaries.

It remains to determine how to calculate the essential spectrum for the constant coef-
ficient operator L∞ on L2(R). Thankfully, this is actually very simple! Indeed, define the
polynomial p(z) = zn + an−1z

n−1 + . . . a0 so that L∞ = p(∂x): the polynomial p is called
the symbol of L. For a given λ ∈ C, we now try to solve the equation (L − λI)v = w for
a given w ∈ L2(R). Since this equation has constant coefficients, this is easily solved using
the Fourier transform. Indeed, denoting the Fourier transform of a function v ∈ L2(R) as

F(v)(ξ) = v̂(ξ) :=
1√
2π

∫
R
e−iξxv(x)dx

and noting that ∂̂mx v(ξ) = (−iξ)mv̂(ξ) for all positive integers m, it follows that

(L− λI)v = w ⇒ (p(iξ)− λ) v̂(ξ) = ŵ(ξ) ⇒ v(x) = F−1

(
ŵ(·)

p(i·)− λ

)
(x)

Clearly, since ξ ∈ R, if λ ∈ p(iR) one can find a w ∈ L2(R) such that the function v defined
above is not in L2(R). Consequently, (L− λI)−1 is not well defined on all of L2(R) for any
λ ∈ p(iR). Furthermore, if λ /∈ p(iR) then the above defines a unique solution v ∈ Hn(R)
for each w ∈ L2(R). Indeed, the Parseval inequality implies that for λ /∈ p(iR) we have the
bound ∥∥∥(L− λI)−1 (w)

∥∥∥
Hn(R)

≤
n∑
j=0

(∥∥∥∥ (i·)j

p(i·)− λ

∥∥∥∥
L∞(R)

)
‖w‖L2(R),

which implies that λ ∈ ρ(L). Combining these insights with the Weyl Essential Spectrum
Theorem, it follows that for a differential operator L of the form (5), one has

σess(L) = p(iR)

where p(z) is the symbol of the constant coefficient, asymptotic operator L∞.
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While the essential spectrum in this case is rather easy to describe, the point spectrum
is in general not. There is an analytical tool known as the Evans function, which is a sort
of infinite dimensional characteristic polynomial for differential operators, that has proven
to be very useful in both numerical and theoretical investigations. We won’t develop the
Evans function here, although interested readers are encouraged to read [KP] for details.
Here, we observe that classical ODE theory give us the following result which applies at
least for 2nd order linear differential operators.

Theorem 4 (Sturm-Liouville Theory on R). Consider a linear differential operator

L = ∂2
x + a1(x)∂x + a0(x)

acting on L2(R), where the coefficient functions a1, a0 are exponentially constant, i.e.

lim
x→±∞

er|x||a1(x)− a±1 | = lim
x→±∞

er|x||a0(x)− a±0 | = 0

for some r > 0 and constants a±1 , a
±
0 ∈ R. Then σp(L) consists of a finite number, possibly

zero, of real simple eigenvalues which can be enumerated in strictly decreasing order

λ0 > λ1 > . . . > λn > max{a−0 , a
+
0 } = maxσess(L).

Further, for each j = 0, 1, . . . , N any eigenfunction vj(x) associated to the eigenvalue λj
has exactly j zeroes on R, all of which are simple.

The above is sometimes referred to as Sturm’s oscillation theorem, and is a fundamental
result that is used heavily in many classical stability results. We emphasize that this result is
sensitive to the boundary conditions, as we will see below in the study of periodic boundary
conditions.

2.3 Periodic Coefficients

Finally, we consider the case where the operator (5) has smooth periodic coefficients, i.e.
there exists a finite T > 0 such that aj(x + T ) = aj(x) for all x ∈ R and j = 0, . . . n − 1.
Such an operator arises naturally when linearizing a PDE about an equilibrium solution
that is spatially T -periodic. Observe that while L here is defined on a bounded domain,
the fact that the boundary conditions are not separated implies different analysis is needed
from that of Section 2.1.

For such operators, there are (at least) two natural classes of boundary conditions one
can enforce on L.

1. One can consider L as a linear operator on

L2
per(0,mT ) :=

{
f ∈ L2

loc(R) : f(x+mT ) = f(x) ∀x ∈ R
}

for some integer m ≥ 1 with densely defined domain Hn
per(0,mT ). This is most natural

when considering the stability of a spatially periodic equilibrium solution of a PDE
to perturbations with the same periodic structure as the underlying solution.
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2. One can consider L as a linear operator on L2(R) with densely defined domain Hn(R).
This is most natural when considering the stability of a spatially periodic equilibrium
solution of a PDE to “localized” perturbations, i.e. perturbations that are integrable
on R.

It turns out that the nature of σ(L) depends sensitively on which class of perturbations are
considered above. We consider these below separately.

2.3.1 Periodic Boundary Conditions

First, consider L as acting on L2
per(0,mT ) for some integer m ≥ 1. The eigenvalues of L

are found by seeking nontrivial solutions in L2
per(0,mT ) of the ODE Lv = λv, which can

be rewritten as a first order system of the form

Y ′ = A(x;λ)Y (9)

where here Y = (v, v′, . . . , v(n−1))t and A(x;λ) is an n × n matrix valued function with
A(x + T ;λ) = A(x;λ) for all x ∈ R. It follows that λ ∈ σp(L) exactly when the ODE (9)
has a non-trivial mT -periodic solution. By Floquet theory, we know that any fundamental
matrix solution of (9) has the form

Φ(x;λ) = P (x;λ)eB(λ)x (10)

where here P (x + T ;λ) = P (x;λ) for all x ∈ R and B(λ) is a generically complex n × n
matrix. Defining the “monodromy operator”

M(λ) = Φ(T ;λ)Φ(0;λ)−1 = P (T ;λ)eB(λ)TP (0;λ)−1

it follows that any solution Y (x;λ) of (9) will satisfy

Y (x+mT ) = M(λ)mY (x)

for all x ∈ R. In particular, we see λ ∈ σp(L) precisely when 1 ∈ σ(M(λ)m) or, equivalently,
when

det
(
M(λ)− e2πji/mI

)
vanishes for some j = 1, 2, . . .m. In particular, if we define the function

D(λ, ξ) = det
(
M(λ)− eiξT I

)
then λ ∈ σp(L) exactly when D(λ, 2πj

nT ) = 0 for some j = 1, 2, . . .m.
The function D(λ, ξ) is called the “periodic Evans function” and can be shown to be

an entire function of λ and analytic in ξ. From basic results in complex analysis, it follows
that the eigenvalues of L on L2

per(0,mT ) are isolated with no finite accumulation point, and
that all eigenvalues necessarily have finite algebraic (and hence geometric) multiplicities.
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Finally, if λ /∈ σp(L) one can construct a Green’s function4 for the operator L − λI so
that, in particular, one can uniquely and continuously solve the nonhomogeneous equation

Lv − λv = f

for every f ∈ L2
per(0,mT ). It follows then that σ(L) = σp(L), and hence that there is no

essential spectrum in this case. While determining the point spectrum of L is in general a
difficult task, when L is a second-order operator we are aided by the following version of
Sturm’s oscillation theorem.

Theorem 5 (Sturm’s Oscillation Theorem: Periodic Case). Consider a linear differential
operator of the form

L = ∂2
x + a1(x)∂x + a0(x)

where the coefficients a1, a0 are smooth and T -periodic. Considering L as acting on L2
per(0, T ),

it follows that σp(L) consists of infinitely many eigenvalues which can be enumerated in non-
increasing order

λ0 > λ1 ≥ λ2 ≥ λ3 ≥ . . . , lim
n→∞

λn = −∞.

Furthermore, for each j = 0, 1, 2, . . . let vj denote an eigenfunction for λj. Then v0 has no
zeroes on [0, T ), while for each j ≥ 1 the eigenfunctions {v2n−1, v2n} both have exactly 2n
simple zeroes on [0, T ).

Observe that in the above theorem, the eigenvalues λj for j ≥ 1 need not be simple.
This is in stark contrast to the other versions of Sturm’s theorem that we have seen, and
is a reflection of the complications induced by the the non-separated boundary conditions
present here.

2.3.2 Acting on Whole Line

Finally, consider the T -periodic coefficient differential operator (5) acting on L2(R). In this
case, it is relatively easy to see that σp(L) = ∅. Indeed, from the Floquet decomposition
(10) we know that a typical solution of the ODE Lv = λv will be of the form

v(x;λ) = eµ(λ)xp(x;λ)

for some T -periodic function p, where here µ(λ) is an eigenvalue5 of B(λ). In particular, we
observe that if <(µ(λ)) < 0, then while the solution v(·;λ) decays to zero at an exponential
rate as x→ +∞, it necessarily blows up exponentially fast as x→ −∞. Similarly, solutions
when <(µ(λ)) > 0 necessarialy blow up as x→ +∞. It follows that the equation Lv = λv
can never have a non-trivial solution of the above form that decays at both spatial infinities,
and hence for every λ ∈ C the equation Lv = λv will never have a solution of the above
form6 in Lp(R) for any finite 1 ≤ p <∞.

4Fundamentally, this follows since for λ /∈ σp(L) the operator L− λI admits an exponential dichotomy.
5In particular eµ(λ)T is an eigenvalue of the monodromy operator M(λ).
6More generally, simply notice from (10) that solutions can be at best bounded on R, corresponding to

λ ∈ C where B(λ) has a non-trivial center subspace.
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From above, it follows the solutions of Lv = λv can at best be bounded on R, happening
precisely when the matrix eB(λ)T , and hence the monodromy operator M(λ) has an eigen-
value on the unit circle. In fact, it can be shown that λ ∈ σ(L) precisely when the spectral
problem Lv = λv has an L∞(R)-eigenfunction’ of the form

v(x;λ, ξ) = eiξxw(x;λ, ξ)

for some ξ ∈ [−π/T, π/T ) and w ∈ L2
per(0, T ). Since σp(L) = ∅, it follows that this

characterizes precisely the essential spectrum of L acting on L2(R).
In particular, λ ∈ σ(L) if and only if there exists a ξ ∈ [−π/T, π/T ) such that there

exists a non-trivial T -periodic solution of the equation

Lξw = λw, where (Lξw)(x) := eiξxL
[
eiξ·w(·)

]
(x)

the T -periodic problem {
e−iξxLeiξxw = λw

w(x+ T ) = w(x) ∀x ∈ R,

i.e. when there exists a ξ ∈ [−π/T, π/T ) such that λ is a T -periodic eigenvalue of the
operator

Lξ := e−iξxLeiξx.

Here, the parameter ξ is referred to as the Bloch, or Floquet-Bloch, parameter and the
one-parameter family of operators {Lξ}ξ∈[−π/T,π/T ), each acting on L2(0, T ), are referred
to as the Bloch operators. Observe that L0 corresponds to considering the operator L with
T -periodic, i.e. co-periodic, boundary conditions. Since the Bloch operators Lξ act on
the space of T -periodic functions L2

per(0, T ), we know from the previous section that their
spectrum consists entirely of isolated, discrete eigenvalues that depend continuously on the
Bloch parameter ξ. Thus, the L2(R)-spectrum of L consists entirely of L∞(R)-eigenvalues
and may be decomposed into countably many curves λ(ξ) such that λ(ξ) ∈ σL2

per(0,T )(Lξ)

for ξ ∈ [−π/T, π/T ). In other words, we have the decomposition

σL2(R)(L) =
⋃

ξ∈[−π/T,π/T )

σL2
per(0,T )(Lξ),

Note that, as in our previous discussion, the T -periodic eigenvalues of Lξ for a given ξ are
given precisely by the zero set of the periodic Evans function D(·; ξ). The periodic Evans
function has proven to be a very useful tool in both analytical and numerical studies of the
stability of periodic waves.

3 Linear Dynamics and Stability

In this section, we begin to study the connection between the spectrum of a linearization
about a wave and the local dynamics near the wave. To this end, consider a PDE of the
abstract form

ut = F (u) (11)
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posed on a Hilbert space X, and suppose there exists a dense, continuously embedded
subspace Y ⊂ X such that (11) is locally well posed on Y , i.e. for very u0 ∈ Y there
exists a time T = T (u0) > 0 such that there exists a unique solution u(t) ∈ Y of (11) with
initial condition u(0) = u0 for t ∈ [0, T ). Here, F : Y ⊂ X → X is a generically nonlinear
operator. If φ ∈ Y is an equilibrium solution of (11), so that F (φ) = 0, we note that if take
initial data u(0) = φ+ v0 with ‖v0‖Y small and let u(t) = φ+ v(t) be the associated unique
local solution, then so long as ‖v(t)‖Y remains sufficiently small it is natural to expect the
dynamics of (11) near φ are well approximated by the linear evolution equation

vt = Lv (12)

where here L = DF (φ) denotes the linear differential operator obtained by linearizing7 F
at φ. Often, understanding the dynamics of the linear problem (12) is the key to controlling
the fully nonlinear dynamics generated by (11).

Definition 3. An equilibrium solution φ of (11) is said to be linearly stable provided that
v = 0 is a stable solution of the linearized system (11), i.e. if for every ε > 0 there exists
a δ > 0 such that for every v0 ∈ Y with ‖v0‖Y < δ the unique solution v(t) of (12) with
v(0) = v0 satisfies ‖v(t)‖Y < ε for all t ≥ 0.

As in the case of ODE theory, it is often the case that the dynamics of the linearized
system (12) are governed by the spectrum of the operator L. Consequently, our first goal is
to understand how solutions of (12) are influenced by the spectrum of the linear differential
operator L.

3.1 Dynamics Induced by the Spectrum

Suppose first that L has an eigenvalue λ0 ∈ C with eigenfunction v0. An easy calculation
shows that the function v(t) = eλ0tv0 solves the ODE (12) with initial data v(0) = v0 and,
furthermore, we have the growth rate |v(t)| = e<(λ0)t|v0|. This gives rise to an exponentially
growing or decaying solution of (12) depending on the sign of <(λ0). Note also that if the
algebraic and geometric multiplicities of λ0 do not agree, indicating the existence of a
Jordan block, one expects additional polynomial growth. For example, suppose there exists
non-trivial v0, v1 such that

Lv0 = λ0v0, (L− λ0)v1 = v0.

In this case, v(t) = eλ0t(tv0 + v1) again solves (12). In particular, if <(λ0) = 0, this
construction yields a solution that grows polynomially in time, giving instability. It follows
that a necessary condition for linear stability of v = 0 is that <(σ(L)) ≤ 0 and that all
λ0 ∈ σ(L) with <(λ0) = 0 are “semi-simple”, i.e. the algebraic and geometric multiplicities
of λ0 are the same.

As may be expected, the dynamics associated to σess(L) is more subtle. To motivate
this, suppose for simplicity L = p(∂x) for some polynomial p(z) =

∑n
j=0 ajz

j with aj ∈ R
7Precisely, F is the Gâteaux derivative of F at φ.
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and an 6= 0, and suppose that L acts on L2(R) with densely defined domain Hn(R). We
recall from Weyl’s Essential Spectrum Theorem that in this case

σ(L) = σess(L) = p(iR).

Mimicing the above arguments, we clearly see that for all ξ ∈ R that p(iξ) ∈ σess(L) and
that

v(t) = eiξx+p(iξ)t

formally solves the PDE (12). While it is clear that these functions do not lie in L2(R) for
any t ≥ 0, we do see that if <(p(iξ)) < 0 for all ξ then all of these solutions exponentially
decay as t → ∞, which should indicate some sort of stability. To make this intuition
rigorous, we must consider the effect of the essential spectrum on L2 initial data, rather
than L∞(R). This can be achieved via the Fourier transform: let v0 ∈ L2(R) and v(t) be
the solution of the IVP

vt = p(∂x)v, v(0) = v0

considered as an evolution equation on L2(R). Taking the Fourier transform we find that

v̂(ξ, t) = ep(iξ)tv̂0(ξ),

so that the Fourier transform of our solution grows or decays exponentially depending on
the sign of <(p(iξ)). If we assume there exists a σ > 0 such that <(p(iξ)) < −σ for all
ξ ∈ R then

|v̂(ξ, t)| ≤ e−σt|v̂0(ξ)|,

from which Plancherl’s theorem implies the solution v obeys the exponential decay estimate

‖v(t)‖L2(R) ≤ e−σt‖v0‖L2(R)

for all t > 0.
Conversely, unstable essential spectrum gives rise to growing solutions of (12). To see

this, suppose there exists a ξ∗ ∈ R such that p(iξ∗) > 0 and <(p(iξ)) < p(iξ∗) for all ξ 6= ξ∗.
In other words, p(iξ∗) is real and is the most unstable part of the essential spectrum.
Suppose furthermore that <(p(iξ)) is locally quadratic near ξ = ξ∗, i.e. for |ξ − ξ∗| � 1 it
satisfies

p(iξ) = p(iξ∗) + iα(ξ − ξ∗)− β(ξ − ξ∗)2 +O(|ξ − ξ∗|3) (13)

for some constants α ∈ R and β ∈ C with <(β) > 0. From above, the function

v(x, t) =
1√
2π

∫
R
eiξx+p(iξ)tv̂0(ξ)dξ

solves (12) with initial data v(x, 0) = v0(x). Using (13), a simple stationary phase argument
shows that for t� 1 we have

v(x, t) ≈ ep(iξ∗)t︸ ︷︷ ︸
I

eiξ
∗xe−(x+αt)2/4βt︸ ︷︷ ︸

II

v̂0(ξ∗)√
2βt︸ ︷︷ ︸
III

.
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t = t1

t = t2 >> t1

x

Figure 1: An illustrative picture showing the evolution of (12) when L has constant coeffi-
cients and has unstable essential spectrum.

Here, term I gives exponential growth, II gives a convecting, oscillatory wave packet with
localized Gaussian envelope and speed α, and III is just a polynomially decaying scalar
factor. See Figure 1 for an illustrative picture.

From the above considerations, is evident that a necessary condition that the equilib-
rium solution φ to be a linearly stable solution of (11) is that <(σ(L)) ≤ 0.

Definition 4. An equilibrium solution φ of (11) is said to be spectrally stable if its lin-
earization L = DF (φ) satisfies

σ(L) ∩ {λ ∈ C : <(λ) > 0} = ∅.

Else, φ is said to be spectrally unstable.

Equipped with the techniques from the previous section, we are can now (finally!) do
some examples.

3.2 Examples

We now present a number of examples illustrating how one can use the above tools to
determine the spectral stability of a given equilibrium solution.

3.2.1 Reaction Diffusion on Bounded Domain

Consider the PDE
ut = uxx + u3, t > 0, x ∈ (0, π) (14)

equipped with homogeneous Dirichlet boundary conditions u(0, t) = u(π, t) = 0 for all
t ≥ 0. We consider the above as an evolution equation on L2(0, π). Clearly u = 0 is an
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equilibrium solution of (14), and here we are interested in the stability of this so-called
“trivial solution”. To this end, we consider the above PDE with the initial condition

u(x, 0) = 0 + v0(x)

where ‖v0‖H1(0,π) � 1 and v0(0) = v0(π) = 0, and note there exists a unique solution v(t)
of (14) defined locally in time and v(t) satisfies v(0, t) = v(π, t) = 0 for so long as v(t) is
defined. Defining the operator L := ∂2

x and the nonlinear operator N(v) = v3, we note v(t)
solves the evolution equation

vt = Lv +N(v) (15)

Here, we consider L as being densely defined on L2(0, π) with domain D(L) := H1
0 (0, π) ∩

H2(0, π). It follows the linearization of (14) about u = 0 is

vt = Lv

considered on L2(0, π) (with Dirichlet B.C.’s), and spectral stability is determined by finding
σ(L).

By the above work, we know that σ(L) = σp(L). Since here L has constant coefficients,
we can easily use ODE theory to find that

σp(L) =
{
λn = −n2 : n = 1, 2, 3, . . .

}
and that, for each n, λn has a one-dimensional eigenspace spanned by sin(nx). Since
<(σ(L)) ≤ −1, it follows that u = 0 is a spectrally stable solution of (14).

3.2.2 Stationary Pulse of Reaction Diffusion Equation

Consider the reaction diffusion equation

ut = uxx − u+ u3 (16)

and note that equilibrium solution satisfy the ODE

uxx − u+ u3 = 0 (17)

which, being a Hamiltonian ODE, can be solved via quadrature as

u2
x

2
= E −

(
u4

4
− u2

2

)
where E ∈ R is an integration constant. Elementary phase plane analysis shows that this
ODE admits positive solution that is homoclinic to u = 0 (occuring at E = 0). This
homoclinic orbit corresponds to a one-parameter family of smooth “pulse” like solutions of
the form {φ(·+ γ)}γ∈R where φ(x) > 0 for all x and can be chosen to be even with φ′(x) > 0
for all x < 0. To investigate the stability of φ, we note the linearized operator about φ is

L := ∂2
x − 1 + 3φ2,
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considered here as a densely defined operator on L2(R). By the Weyl essential spectrum
theorem, we easily find that σess(L) = σess(∂

2
x − 1) = (−∞,−1], which is stable. To

investigate the point spectrum of L, begin by observing that by differentiating the profile
ODE (17) (with u = φ) with respect to x gives Lφ′ = 0 and, since φ′ decays to 0 at
an exponential rate, φ′ ∈ L2(R). It follows that 0 ∈ σp(L), and we will have that φ is a
spectrally stable solution of (16) if and only if λ = 0 is the largest eigenvalue of L. However,
since φ necessarialy has a critical point at x = 0 it follows that φ′ has exactly one root,
which, by the Sturm Oscillation Theorem, implies that 0 is the second largest eigenvalue
of L. In particular, there exists a λ0 > 0 such that λ0 ∈ σp(L). Consequently, the pulse
solution φ is a spectrally unstable solution of the scalar reaction diffusion equation (16).

3.2.3 Stationary Front in Reaction Diffusion Equation

Consider now the reaction diffusion equation

ut = uxx + u− u3. (18)

Following the above example, it is clear (18) admits a one-parameter family of smooth
“front” like solutions {φ(·+ γ)}γ∈R that satisfy

lim
x→−∞

φ(x) = −1, lim
x→∞

φ(x) = 1

and φ′(x) > 0 for all x ∈ R. Here, the linearized operator is L := ∂2
x + 1 − 3φ2, and the

Weyl essential spectrum theorem implies σess(L) = σess(∂
2
x−2) = (−∞,−2], which is stable.

Furthermore, as above we have Lφ′ = 0 and hence, since φ′ ∈ L2(R), it follows that 0 is an
eigenvalue of L. Since φ is strictly monotone on R, Sturm’s Oscillation Theorem implies
that 0 is the largest eigenvalue of L, and hence that φ is a spectrally stable solution of the
reaction diffusion equation (18).

In the coming sections, we will continue this investigation to show that the stationary
front φ of (18) is in fact nonlinearly stable in a very particular sense.

Remark 6. In both of the above examples, a crucial observation came from the fact that
Lφ′ = 0, hence that we could actually identify the kernel of L. While this can be verified
directly by differentiating the profile equation in each case, this fact actually follows from
the translation invariance of the PDE’s in each case. To see this, note that if we write the
PDE’s above as

ut = F (u)

the fact that the coefficients of F are independent of x implies that F (φ(·+γ)) = 0 for every
γ ∈ R. Differentiating with respect to γ at γ = 0 gives

∂

∂γ

∣∣
γ=0

F (φ(·+ γ)) = DF (φ)φ′ = 0,

where here DF (φ) denotes the linearization of F about φ. This observation extends to
equations that have additional symmetries as well, such as phase invariance φ 7→ eiβφ and
Galilean boosts, and can be seen as a sort of a linearized Noether’s theorem.
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3.2.4 The KdV Equation

For something a little different, consider the Korteweg-de Vries (KdV) equation

ut + uxxx + uux = 0 (19)

The KdV equation admits a one-parameter family of solitary wave solutions of the form
u(x, t) = u(x − ct) with wave speed c > 0 that are asymptotic (at an exponential rate) to
0 as x → ±∞. Indeed, such solutions are equilibrium solutions of the KdV equation in
traveling coordinates ξ = x− ct, which reads

ut − cux + uxxx + uux = 0. (20)

By reducing the profile equation to quadrature form

u2
x

2
= E −

(
1

3
u3 − c

2
u2

)
.

we see that such a solitary wave corresponds to the homoclinic orbit to u = 0 that exists
when E = 0. The linearization of (20) about φ is given by

vt = −vxxx + cvx − (φv)x =: Lv.

By the Weyl Essential Spectrum Theorem, we see that

σess(L) = σess

(
−∂3

x + c∂x
)

= Ri.

Thus, the entire imaginary axis belongs to the essential spectrum of L. With more work,
one can show that λ = 0 is the only eigenvalue of L so that the solitary wave φ is indeed
spectrally stable. However, due to the neutral nature of the stability (all spectrum lies
on the imaginary axis) it is not at all clear how one could hope to obtain linear (or even
nonlinear) stability from this information.

Notice, however, that if we consider perturbations of φ of the form eaxw(x, t) with
w(·, t) ∈ L2(R) and a ∈ R then w would solve the linear equation

wt = e−axLeaxw.

To such perturbations, spectral stability is determined by σ(e−a·Lea·). Note that for all
w ∈ L2(R) we have

e−axLeaxv = (∂x + a)
(
−(∂x + a)2 + c− φ

)
v

and hence, by the Weyl Essential Spectrum Theorem, we have σess(e
−a·Lea·) = pa(Ri)

where
pa(z) = (z + a)

(
−(z + a)2 + c

)
.

Setting z = ik with k ∈ R we find that

<(pa(ik)) = −a3 + ca+ 3ak2

which is strictly negative for all k ∈ R provided a < 0 and 0 < |a| <
√
c; see Figure 2.

Thus, in this case we can change the class of perturbations in order to ensure that at least
the essential spectrum is moved into the left half plane, opening the door to the possibility
of obtaining some sort of stability result.
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Figure 2: For the KdV equation, plots of σess(e
−a·Lea·) when c = 1 for (a) a = 0, (b)

a = −1
2 , and (c) a = −1. While the essential spectrum is stable for a ∈ (−1, 0), when

a < −1 one finds that the essential spectrum crosses back into the unstable right half plane.

3.3 Linear Stability

We now aim at establishing linear stability from spectral stability information. To begin,
we first consider a simpler case where we don’t have essential spectrum to worry about.

To this end, recall that u = 0 is a spectrally stable equilibrium solution of{
ut = uxx + u3, t > 0, x ∈ (0, π)

u(0, t) = u(π, t) = 0 ∀t ≥ 0.
(21)

In fact, the linearization in this case is given by vt = Lv with L = ∂2
x and, moreover,

the eigenvalues are given explicitly by λ2
n, n = 1, 2, 3, . . . with corresponding eigenfunctions

vn(x) = sin(nx). Using the fact that {sin(n·)}∞n=1 forms an orthogonal basis of H1
0 (0, π) ∩

H2(0, π), it follows from linearity that given any v0 ∈ L2(0, π) the unique solution of the
evolution equation vt = Lv with v ∈ H1

0 (0, π) ∩H2(0, π) and v(x, 0) = v0(x) is given by

v(x, t) =

∞∑
n=1

ane
−n2t sin(nx)

where an = 2
π

∫ π
0 v0(x) sin(nx)dx are the Fourier sine coefficients of v0. In particular, we

have from Parseval’s inequality that

‖v(·, t)‖L2(0,π) ≤ e−t‖v0‖L2(0,π),

implying that u = 0 is a linearly stable solution of (21).
In the above example, notice we an write v(t) = T (t)v0 where the operator T (t) is given

by

T (t) =

∞∑
n=1

2

π
〈sin(nx), ·〉L2(0,π) e

−n2t sin(nx).

It is elementary to verify that T (t) is a bounded linear operator on L2(0, π) for all t > 0
and that, furthermore, it satisfies
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(1) T (0) = I, the identify operator.

(2) T (s)T (t) = T (s+ t) = T (t)T (s) for all s, t ≥ 0.

(3) For all v0 ∈ L2(0, π), T (t)v0 → v0 in L2(0, π) as t→ 0+.

Any set of bounded linear operators {T (t)}t≥0 that satisfies (1)-(3) above is called a strongly
continuous, or C0, semigroup of operators. Notice from the functional properties (1)-(3) it
makes sense to denote

T (t) = eLt t ≥ 0.

Furthermore, in the above example we observed that the fact that <(σ(L)) ≤ −1 implied
that ∥∥eLtv0

∥∥
L2(0,π)

≤ e−t‖v0‖L2(0,π)

so that the decay rate on the linearized solution operator eLt is given exactly by the maxi-
mum real part of the spectrum of L.

Not surprisingly, everything said above becomes more difficult when the essential spec-
trum is present. For definiteness, let

L = ∂nx + an−1(x)∂n−1
x + . . .+ a1(x)∂x + a0(x)

be an nth-order linear differential operator that is densely defined on L2(R) with the co-
efficients aj being smooth and exponentially localized functions. In this case, we have the
following lemma8.

Lemma 1. Suppose that the exponentially localized operator L above, acting on L2(R), is
well-posed, i.e. there exists an α > 0 such that < (σess(L)) < α. Then L generates a C0

semigroup of operators {T (t)}t≥0 on Hk(R) for every k ≤ n.

The above lemma guarantees that so long as L is well-posed, then for every v0 ∈ L2(R)
the unique solution to the linear evolution equation

vt = Lv

with v(0) = v0 is given by v(t) = T (t)v0. As before, due to the fact that T (t) satisfies
properties (1)-(3) above, we often denote T (t) = eLt. Now, a natural question remains
regarding the connection between the maximum real part of the spectrum of L and the
decay of the linearized semigroup {eLt}t≥0. This is addressed in general by the Gearhart-
Prüss Theorem.

Theorem 6 (Gearhart-Prüss). Let X be a Hilbert space and assume L : X → X is a linear
operator with densely defined domain. Let Π be a finite dimensional spectral projection9

associated with L. If there exists constants M,σ > 0 such that∥∥(L− λI)−1(I −Π)f
∥∥
X
≤M‖f‖X ∀f ∈ X (22)

8The forthcoming results come from [KP, Section 4.1].
9In particular, one could take Π to be the zero operator.
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on the set <(λ) ≥ −σ, then there exists a constant C > 0 such that the C0 semigroup
associated with (I −Π)L satisfies the decay estimate∥∥∥e(I−Π)Ltf

∥∥∥
X

=
∥∥eLt(I −Π)f

∥∥
X
≤ Ce−σt‖f‖X

for every f ∈ X.

Admittedly, it is often a very difficult task to verify the resolvent operator of L is
uniformly bounded on a half space <(λ) > −σ. However, we emphasize that an obvious
necessary condition is <(σ((I − Π)L)) < −σ so that, in particular, it is necessary that
L to be spectrally stable with a spectral gap away from Ri when acting on the invariant
subspace (I − Π)X. Often times, in practice, Π corresponds to projecting out some finite
dimensional eigenspace of L. Thankfully, however, there is a commonly occurring class of
operators where the resolvent bound always holds.

Lemma 2. Suppose the exponentially localized linear operator L above is 2nd-order, and
let Π be a finite dimensional spectral projection for L. Then the uniform resolvent bound
(22) holds on <(λ) ≥ −σ + ε for every ε > 0 provided that

<(σ((I −Π)L)) < −σ.

In particular, in this case we are guaranteed that for every ω ∈ (−σ, 0) there exists a constant
C = C(ω) > 0 such that ∥∥eLt(I −Π)f

∥∥
H1(R)

≤ Ce−ωt‖f‖H1(R)

for every f ∈ H1(R).

In other words, the above lemma guarantees us that if L is a second-order, exponentially
localized differential opeartor, then one can obtain decay bounds on the semigroup {eLt}t≥0

directly from the spectral information on L. We will use this observation heavily in our
forthcoming examples. Note that this observation extends to a more general class of so-
called “sectorial” operators, where the linearized solution operator can be defined via the
holomorphic functional calculus as

eLt =
1

2πi

∫
Γ

eλt

λI − L
dλ,

where here Γ is some curve in C going from α− i∞ to α + i∞ for some α > max<(σ(L))
that is always to the right of the spectrum of L. While there is some serious fun one can
have here trying to obtain properties of eLt through the use of complex analytic techniques,
we leave this as an exercise for the interested reader.
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3.4 Linear Stability of Monotone Front

Consider again the reaction diffusion equation

ut = uxx + u− u3, x ∈ R, t > 0 (23)

and recall above we verified that (23) admits a stationary front solution φ that is strictly
monotone and satisfies

lim
x→−∞

φ(x) = −1, lim
x→+∞

φ(x) = 1.

Furthermore, recall that we have already established the following spectral properties of
L = ∂2

x + 1 − 3φ2, considered here as an operator on L2(R) with densely defined domain
H2(R):

1. The essential spectrum is given explicitly by σess(L) = (−∞,−2].

2. 0 ∈ σp(L) with eigenfunction φ′.

3. There exists a γ > 0 such that σp(R) \ {0} < −γ.

Defining Π : L2(R)→ ker(L) to be the spectral projection

Π :=
〈φ′, ·〉L2

‖φ′‖2
L2

φ′

and noting that σ(ΠL) < −γ, it follows from the work in the previous section that L
generates a C0 semigroup {eLt}t≥0 and, furthermore, that for every ω ∈ (0, γ) there exists
a constant C = C(ω) > 0 such that∥∥eLt(I −Π)v(0)

∥∥
L2 . e−ωt‖v(0)‖L2

for all t ≥ 0.
Since we had to project out the kernel of L to establish the above linear decay result,

we can not conclude linear stability of φ from here. Indeed, it is a-priori possible that
initially nearby solution u(t) simply “drifts” along the center manifold associated with
Ker(L). Nevertheless, in this case we can show the following linear, asymptotic orbital
stability result:

‖v(t)−Π(v(0))‖L2 ≤ Ce−ωt‖v(0)‖L2 .

In particular, this motivates that v(t) will converge to some multiple, depending on v(0),
of φ′ as t → ∞, i.e. for given initial data, to a fixed element of the “center subspace”. In
terms of the original solution u(x, t), this suggests that an initially nearby solution u(x, 0)
will satisfy

u(x, t) ≈ φ(x) + v(x, t)

≈ φ(x) + γ∞φ
′(x) for t� 1

≈ φ (x+ γ∞)
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if ‖v(0)‖H1 � 1, where here γ∞ =
〈ψ′,v(0)〉L2

‖φ′‖2
L2

and the last approximation follows by Taylor’s

theorem. This implies that one should expect that a solution that starts near the stationary
front φ will evolve into a slight spatial translate of φ. In a later section, we will verify this
behavior at the nonlinear level.

3.5 The Periodic Case

Recall that if L is a linear operator of the form (5) with T -periodic coefficients, considered
here as acting on L2(R), then

σ(L) = σess(L) =
⋃

ξ∈[−π/T,π/T )

σL2
per(0,T )(Lξ)

where here Lξ := e−iξxLeiξx are the Bloch operators. A natural question arises in how
T -periodic spectral information about the Bloch operators Lξ influence the behavior of the
linearized semigroup eLt. This is most easily seen through the introduction of the Bloch, or
Floquet-Bloch, transform.

To motivate this, notice that given any v ∈ L2(R) we can express v in terms of its
inverse Bloch representation as

v(x) =

∫ π/T

−π/T
eiξxv̌(ξ, x)dξ

where here v̌(ξ, x) :=
∑

k∈Z e
2πikx/T v̂(ξ + 2kπ/T ) are T -periodic functions of x, and v̂

denotes the Fourier transform of v. Indeed, the above formulas may be easily checked on
the Schwartz class by grouping frequencies that differ by 2π/T in the standard Fourier
transform representation of v:

v(x) =
∑
k∈Z

∫ π/T

−π/T
ei(ξ+2πkT )xv̂(ξ + kT )dξ =

∫ π/T

−π/T
eiξxv̌(ξ, x)dξ.

The Bloch transform

B : L2(R)→ L2([−π/T, π/T );L2
per(0, T ))

given by B(v)(ξ, x) := v̌(ξ, x) is then well-defined, bijective and continuous. In fact, for a
given v ∈ L2(R) one can show that B(Lv)(ξ, x) = Lξ[v̌(ξ, ·)](x), and hence that the Bloch
operators Lξ may be viewed as operator-valued symbols under B, acting on L2

per(0, T ).

Similarly, from the identity B
(
eLtv

)
=
(
eLξtv̌(ξ, ·)

)
(x), we find the Bloch solution formula

for the periodic-coefficient operator L:

(
eLtv

)
(x) =

∫ π/T

−π/T
eiξx

(
eLξtv̌(ξ, ·)

)
(x)dξ. (24)
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It follows that the Bloch transform B diagonalizes the periodic coefficient operators L in
the same way that the Fourier transform diagonalizes constant-coefficient operators.

Using the representation formula (24), bounds on the Bloch solution operators eLξt,
which are governed by the the T -periodic eigenvalues of the Bloch operators Lξ, can be
converted to bounds on the linearized solution operator eLt. Indeed, using the classical
Parseval theorem we note that for all v ∈ L2(R) that

‖v‖2L2(R) = 2π

∫ π/T

−π/T

∫ T

0
|B(v)(ξ, x)|2 dz dξ

so that the rescaled Bloch transform
√

2πB is an isometry from L2(R) into the space
L2([−π/T, π/T );L2

per(0, T )). More generally, by interpolating with the triangle inequal-
ity, corresponding to (p, q) = (∞, 1) below, we obtain the generalized Hausdorff-Young
inequality

‖v‖Lp(R) ≤ Cp,q ‖B(v)‖Lq([−π/T,π/T );Lpper(0,T )

for q ≤ 2 ≤ p and 1
p + 1

q = 1. This immediately gives us the result∥∥eLtv∥∥
Lp(R)

≤ Cp,q
∥∥eLξtv̌(ξ, ·)

∥∥
Lqξ([−π/T,π/T );Lpper(0,T ))

(25)

which allows one to obtain estimates on the linearized semigroup eLt from estimates on the
Bloch semigroups eLξt.

4 Nonlinear Stability: Examples

In this section, we present a few examples where the above theories can be applied to yield
nonlinear stability of solutions of PDE’s. In the first example, we will see an example where
the linearized operator about the trivial solution admits a spectral gap, and will establish
that this trivial solution is in fact asymptotically stable. In the second example, we study
the case when the spectrum of the linearized operator is stable with a spectral gap, except
for the existence of a simple eigenvalue at the origin coming from the translation invariance
of the PDE. Finally, we will discuss complications that arise when considering the stability
of periodic patterns to localized (i.e. integrable on R) perturbations, and how the ideas
presented in these notes can be used to study the nonlinear stability of such patterns.

4.1 Reaction Diffusion on Bounded Domain

Consider the PDE
ut = uxx + u3, t > 0, x ∈ (0, π) (26)

equipped with the homogeneous Dirichlet boundary conditions

u(0, t) = u(π, t) = 0 ∀t ≥ 0.
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We consider the above as an evolution equation on L2(0, π). Clearly u = 0 is an equilibrium
solution of (26), and here we are interested in the stability of this so-called “trivial solution”.
To this end, we consider the above PDE with the initial condition

u(x, 0) = 0 + v0(x)

where ‖v0‖H1(0,π) � 1 and v0(0) = v0(π) = 0, and note there exists a unique solution v(t)
of (26) defined locally in time and v(t) satisfies v(0, t) = v(π, t) = 0 for so long as v(t) is
defined. Defining the operator L := ∂2

x and the nonlinear operator N(v) = v3, we note v(t)
solves the evolution equation

vt = Lv +N(v) (27)

Here, we consider L as being densely defined on L2(0, π) with domain D(L) := H1
0 (0, π) ∩

H2(0, π). Recall from previous work that we have <(σ(L)) ≤ −1 and that the associated
linearized semigroup {eLt}t≥0 obeys the exponential decay bound∥∥eLtf∥∥

H1(0,π)
≤ Ce−t ‖f‖H1(0,π) ∀f ∈ D(L)

valid for some constant C > 0.
To establish the nonlinear stability of u = 0, we note that we can rewrite the nonlinear

perturbation equation (27) as the equivalent integral equation

v(t) = eLtv(0) +

∫ t

0
eL(t−s)N(v(s))ds,

which, as it is for ODE, is sometimes called “Duhamel’s formula”. Our goal is to prove that
u = 0 is nonlinearly stable in the following sense.

Theorem 7. For each ω ∈ (−1, 0), there exists a δ, C = C(ω, δ) > 0 such that if u0 ∈ D(L)
with

‖u0‖H1(0,π) < δ

then the unique solution u(t) of (26) with u(0) = u0 satisfies

‖u(t)‖H1(0,π) ≤ Ce−ωt‖u0‖H1(0,π).

for all t ≥ 0.

Remark 7. This is purely a local stability result. Indeed, one can show that if ‖u0‖H1(0,π)

is too large, then the solution u(t) of the IVBVP (26) blows up in finite time. Specifically,
one can show that if

S(t) :=
1

π

∫ π

0
u(x, t) sin(x)dx

denotes the first Fourier sine coefficient of the solution u(t), then S satisfies the differential
inequality

S′(t) ≥ −S(t) +
π2

4
S(t)3
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which, thanks to Gronwall’s inequality, implies there exists a finite t∗ > 0 such that S(t)→
+∞ as t→ t−∗ . It follows that ‖u(t)‖H1(0,π) must blow up at least by time t∗. Note it could
blow up before time t∗ if a higher order Fourier coefficient blows up first. Regardless, this
emphasizes the fact that stability is a purely local theory.

To prove this theorem, we start by noting that, thanks to the Sobolev embedding
L∞(0, π) ⊂ H1(0, π), the nonlinear term N(v) is well defined in H1 and satisfies

‖N(u)‖H1(0,π) ≤M‖u‖
3
H1(0,π)

for some constant M > 0 independent of u; indeed, recall that Hs(0, π) is an algebra when
s > 1

2 . Furthermore, by the local well posedness, given any R > 0 sufficiently small and
u0 ∈ H1(0, π) with ‖u0‖H1(0,π) <

R
2 then there exists a T = T (u0) > 0 such that the

(26) with initial condition u(0) = u0 has a unique solution u(t) ∈ H1(0, π) defined for all
t ∈ [0, T ) such that

‖u(t)‖H1(0,π) < R ∀t ∈ [0, T ).

By the exponential decay bound on eLt and the triangle inequality, we find from Duhamel’s
formula that

‖u(t)‖H1(0,π) ≤ Ce−t‖u(0)‖H1(0,π) + C

∫ t

0
e−(t−s) ‖N(u(s))‖H1(0,π) ds

≤ Ce−t‖u(0)‖H1(0,π) + CM

∫ t

0
e−(t−s)‖u(s)‖3H1(0,π)ds.

The above integral inequality implies the desired decay bound. We will establish this using
two separate arguments: the first via a more classical ODE approach using Gronwall’s
inequality, and the second using a different approach that will be more suitable to our
forthcoming PDE applications.

For our first proof of the above claim, observe that since ‖u(t)‖H1(0,π) < R for all
t ∈ [0, T ) we have

et‖u(t)‖H1(0,π) ≤ C‖u(0)‖H1(0,π) + CMR2

∫ t

0
es‖u(s)‖H1(0,π).

Gronwall’s inequality now immediately gives that

et‖u(t)‖H1(0,π) ≤ C‖u(0)‖H1(0,π)e
CMR2t

for all t ∈ [0, T ). Choosing R > 0 sufficiently small that ω := 1− CMR2 > 0 and choosing
ε ∈ (0, R2 ) such that Cε < R

4 it follows that if ‖u(0)‖H1(0,π) < ε then

‖u(t)‖H1(0,π) ≤ C‖u(0)‖H1(0,π)e
−ωt ∀t ∈ [0, T )

and, further, that ‖u(t)‖H1(0,π) <
R
2 for all t ∈ [0, T ). By extensibility, it follows that

T = +∞ and the above bounds hold for all t ≥ 0, as claimed. We note that while the
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above “Gronwall” argument works very well in this case, it is not suitable for our intended
applications to problems on the whole line.

As an alternative for the above Gronwall based argument, for all t ∈ [0, T ), define the
quantity

Z(t) := sup
0≤s≤t

es‖u(s)‖H1(0,π)

and note the expected decay rate follows from showing that Z is uniformly bounded. Now,
for all t ∈ [0, T ) and s ∈ [0, t] we have

‖u(s)‖H1(0,π) = e−s
(
es‖u(s)‖H1(0,π)

)
≤ e−sZ(t)

so that, if we fix t ∈ [0, T ) we have for all t′ ∈ [0, t)

‖u(t′)‖H1(0,π) ≤ Ce−t
′‖u(0)‖H1(0,π) +M

∫ t′

0
e−(t′−s)e−3sZ(s)3ds

and hence

et
′‖u(t′)‖H1(0,π) ≤ C‖u(0)‖H1(0,π) + CM

(∫ t′

0
e−2sds

)
Z(t)3

≤ C‖u(0)‖H1(0,π) + M̃Z(t)3

where here M̃ = CM . Taking the supremium in t′ ∈ [0, t) it follows that

Z(t) ≤ C‖u(0)‖H1(0,π) + M̃Z(t)3.

for all t ∈ [0, T ). Now, note that if we define the polynomial

P (r) := M̃r3 − r + C‖u(0)‖H1(0,π)

then the above inequality simply states that P (Z(t)) ≥ 0 for all t ∈ [0, T ). When ‖u(0)‖H1(0,π)

is small, we find that P (r) has roots given by

r1 = C‖u(0)‖H1(0,π) +O(‖u(0)‖2H1(0,π)), r2 =
1

M̃
+O(‖u(0)‖H1(0,π));

see Figure 3. Taking C > 1 above and noting that 0 ≤ Z(0) = ‖u(0)‖H1(0,π), it follows by
continuity of Z(t) as a function of t that if ‖u(0)‖H1(0,π) is sufficiently small then

Z(t) ≤ r1 ≤ 2C‖u(0)‖H1(0,π)

for all t ∈ [0, T ) which, by definition, implies that

‖u(t)‖H1(0,π) ≤ 2C‖u(0)‖H1(0,π)e
−t

for all t ∈ [0, T ). Again by extensibility, it follows that T = +∞ and hence that the above
bounds hold for all t ≥ 0, as claimed.
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Figure 3: An illustration of the polynomial P (r) when ‖u(0)‖H1(0,π) is sufficiently small.
Since P (Z(t)) ≥ 0, it follows by continuity that Z(t) must lie in one of the red regions for
so long as it is defined.

4.2 Reaction Diffusion: Stationary Front

Consider now the reaction diffusion equation

ut = uxx + u− u3, x ∈ R, t > 0 (28)

Previously, we have seen that this equation admits a one-parameter family of stationary
front solutions of the form φ(x+ α), α ∈ R, where φ is strictly monotone and satisfies

lim
x→−∞

φ(x) = −1, lim
x→+∞

φ(x) = 1.

To investigate the nonlinear stability of φ, we consider (28) with the initial data

u(0) = φ+ v0, ‖v0‖H1 � 1

and note, since (28) is locally well posed on the space

X :=
{
f : 1− |f |2 ∈ H1(R)

}
,

there exists a unique local solution u(t) ∈ H1(R) defined for t ∈ [0, T ) for some T > 0. A
simple calculation shows the linearization of (28) about φ is given by

vt = vxx + v − 3φ2v =: Lv (29)

In this case, we have seen that 0 ∈ σp(L) with eigenfunction φ′, owing to the spatial-
translational invariance of the PDE (28), and that <(σ(L) \ {0}) is uniformly bounded
away from the imaginary axis. Thus, the main difference between the current example
and the previous is the presence of an eigenvalue at the origin coming from a continuous
symmetry of the underlying equation. In this example, we will illustrate how to deal with
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this additional complication through the introduction of a “modulation function” that, in
some sense, will ensure the nonlinear perturbation always lies in the stable subspace of the
linearized operator L.

Recall, through a detailed study of σ(L) and the resulting bounds on the linearized
semigroup {eLt}t≥0, we have seen that by defining Π : L2(R) → ker(L) to be the spectral
projection

Π :=
〈φ′, ·〉L2

‖φ′‖2
L2

φ′

the linearized semigroup {eLt}t≥0 satisfies the decay estimate: for every ω ∈ (0, γ) there
exists a constant C = C(ω) > 0 such that∥∥eLt(I −Π)v(0)

∥∥
L2 . e−ωt‖v(0)‖L2

for all t ≥ 0. In particular, we demonstrated that this gives the following linear, asymptotic
orbital stability result:

‖v(t)−Π(v(0))‖L2 ≤ Ce−ωt‖v(0)‖L2 .

Of particular importance, this leads us to suspect that v(t) will converge to a multiple,
depending on v(0), of φ′ as t → ∞, i.e. for given initial data, to a fixed element of the
“center subspace”. In terms of the original solution u(x, t), this suggests that an initially
nearby solution u(x, 0) will satisfy

u(x, t) ≈ φ (x+ γ∞) for t� 1,

where here γ∞ =
〈ψ′,v(0)〉L2

‖φ′‖2
L2

. This implies that one should expect that a solution that starts

near the stationary front φ will evolve into a slight spatial translate of φ.
To verify the above prediction at a nonlinear level, first notice in the “classical” notion

of asymptotic stability, one aims at showing u(t) → φ as t → ∞ and hence we want to
control the distance from u(t) to φ. This motivates introducing the perturbation variable

v(t) = u(t)− φ

defined for t ∈ [0, T ). However, here we expect that u(t) → φ(· + γ∞) as t → ∞ for some
γ∞ small. Consequently, in this case we want to control the distance from u(t) to the
1-dimensional manifold

M := {φ(·+ γ) : γ ∈ R} ⊂ H1(R). (30)

This motivates the introduction of the new perturbation variable

v(t) = u(t)− φ(· − γ(t)), t ∈ [0, T )

where γ(t) is some function to be determined. The function γ(t) is sometimes called a
“modulation function”. Note that regardless of how γ(t) is chosen above, for all t ∈ [0, T )
we have

dist(u(t),M) := inf
γ∈R
‖u(t)− φ(·+ γ)‖H1 ≤ ‖u(t)− φ(·+ γ(t)‖H1 ,
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and so we are free to choose γ(t) above to fit our needs.
Motivated by above, we begin by determining a suitable foliation for a small “tubular”

neighborhood of the manifold M in H1(R), i.e. a local coordinate system defined in a
neighborhood of the orbit of φ that is suitable for our needs. This can be done in a
number of ways, and one will find many different such foliations in the literature. Since the
linearized semigroup eLt is exponentially stable when restricted to Ker(L)⊥, here we would
like to choose γ(t) such that v ∈ Ker(L)⊥ for all t ∈ [0, T ).

Lemma 3. There exists a δ > 0 and smooth functions (γ, v) : H1(R) → R ×H1(R) with
γ(φ) = 0, v(M) = 0 such that if u ∈ H1(R) with

dist(u,M) := inf
z∈R
‖u− φ(·+ z)‖H1 < δ,

then
u = φ(·+ γ(u)) + v(u)

where v(u) ∈ Ker(L)⊥.

Proof. Suppose, without loss of generality, ‖u − φ‖H1 is small. For each such u, want to
show there exists a γ ∈ R with γ(φ) = 0 such that〈

φ′, u− φ(·+ γ)
〉
H1︸ ︷︷ ︸

g(γ,u)

= 0.

Since g is smooth with g(0, φ) = 0 and ∂γ(0, φ) = −‖φ′‖2L2 6= 0, the result follows by the
implicit function theorem.

Thus, if ‖u− φ‖H1 < δ
2 and

v(t) := u(t)− φ(·+ γ(t))

then by possibly choosing T > 0 smaller above we can assume γ(t) is such that

v(t) ∈ Ker(L)⊥ ∀ t ∈ [0, T )

and, further, without loss of generality that γ(0) = 0 (else, can consider the stability of a
translate of φ.

Now, since u(t) solves (28) for all t ∈ [0, T ), it follows that the functions v(t) and γ(t)
satisfy

∂t (v + φ(·+ γ(t))) = ∂2
x (v(t) + φ(·+ γ(t))) + (v + φ(·+ γ(t)))− (v + φ(·+ γ(t)))3

for all t ∈ [0, t) which, using that φ(·+γ(t)) is a stationary solution of (28), can be rewritten
as

vt + φ′(·+ γ(t))γ′(t) = Lγ(t)v +Nγ(t)(v) (31)
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where here
Lγ(t) = ∂2

x + 1− 3φ(·+ γ(t))2

denotes the linearization of (28) about the translate φ(·+ γ(t)) and

Nγ(t)(v) = −3v2φ(·+ γ(t))− v3

is a nonlinear functional. Now, we can not apply our semigroup theory and estimates to
(31) since the coefficients of the linear operator Lγ(t) depend on the evolution variable t.
To compensate for this, we simply observe that

Lγ(t) = L+
[
Lγ(t) − L

]
and hence treat the operator Lγ(t) − L as an additional nonlinearity. It follows that v(t)
and γ(t) satisfy the equation

vt + φ′(·+ γ(t))γ′(t) = Lv +
[
Nγ(t)(v) + (Lγ(t) − L)v

]︸ ︷︷ ︸
R(γ(t),v)

(32)

Next, we decompose (32) according to the orthogonal decomposition H1 = Ker(L) ⊕
Ker(L)⊥. Applying the spectral projection Π to (32) gives

Π(vt) + Π
(
φ′(·+ γ(t))φ′(t)

)
= ΠLv + ΠR(γ(t), v).

Since Π(v) = 0 for all t ∈ [0, T ) we have Π(vt) = ∂tΠ(v) = 0. Furthermore, since Π is a
spectral projection for L, the operators L and Π commute and hence Π ◦ L = L ◦ Π = 0.
We may thus rewrite the above equation as〈

φ′, φ′(·+ γ(t))
〉
γ′(t) =

〈
φ′,R(γ(t), v)

〉
From here, we an derive estimates on γ′ as follows. Note that

〈
φ′, φ′(·+ γ(t))

〉
=
〈
φ′, φ′

〉
+

〈
φ′, φ′(·+ γ(t))− φ′︸ ︷︷ ︸

z(t)

〉

Since ‖z(t)‖ ≤ ‖φ′′‖|γ(t)|, it follows that so long as γ(t) is small, say for all t ∈ [0, T ) with
T > 0 possibly smaller than before, the above says

|γ′(t)| ≤ C(1 + γ(t))
∣∣〈φ′,R(γ(t), v)

〉∣∣
for all t ∈ [0, T ) for some constant C > 0. Similarly, noting that

‖R(γ(t), v)‖ ≤ C
(
‖v‖2 + |γ(t)|‖v‖

)
it follows that, by possibly choosing T > 0 smaller yet again (so that ‖v‖H1 is sufficiently
small for all t ∈ [0, T )),

|γ′(t)| ≤ C
(
‖v(t)‖2H1 + |γ(t)|‖v(t)‖

)
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for all t ∈ [0, T ).
Next, we project (32) onto the stable subspace Ker(L)⊥. Applying (I − Π) to (32) we

get
vt + (I −Π)φ′(·+ γ(t))γ′(t) = Lv + (I −Π)R(γ(t), v).

As above, we can rewrite the second term as

(I −Π)
[(
φ′ + (φ′(·+ γ(t))− φ′)

)
γ′(t)

]
= (I −Π)z(t)γ′(t)

so that
vt = Lv + (I −Π)

[
R(γ(t), v)− z(t)γ′(t)

]
.

Setting RF (γ(t), v) := R(γ(t), v) − z(t)γ′(t), it follows that for all t ∈ (0, T ) the functions
γ(t) and v(t) satisfy the coupled system

γ′(t) = O
(
‖v(t)‖2H1 + |γ(t)|‖v(t)‖H1

)
v(t) = eLtv(0) +

∫ t

0
eL(t−s) (I −Π)RF (γ(s), v(s))ds.

(33)

Now, we know that if ω ∈ (0, γ) then there exists a C = C(ω) > 0 such that∥∥eLtf∥∥
H1 ≤ Ce−ωt‖f‖H1 ∀ f ∈ Ker(L)⊥.

Fix such an ω and fix ω̃ ∈ (ω/2, ω) and define for all t ∈ [0, T ) the functions

Mv(t) := sup
0≤s≤t

eω̃s‖v(s)‖H1 , Mγ(t) := sup
0≤s≤t

|γ(s)|.

Note that for all t ∈ [0, T ) and s ∈ [0, t] we have

‖v(s)‖H1 ≤ e−ω̃sMv(t), |γ(s)| ≤Mγ(t).

Our goal is to show that Mv and Mγ are uniformly bounded in time.
To this end, notice that if we fix t ∈ [0, T ) and integrate (33)(i) from [0, t′] for some

t′ ∈ [0, t] we have

γ(t′)− γ(0) =

∫ t′

0
O
(
‖v(s)‖2H1 + |γ(s)|‖v(s)‖H1

)
ds.

Since γ(0) = 0 by choice, it follows that

|γ(t′)| ≤ C

[(∫ t′

0
e−2ω̃sds

)
Mv(t)

2 +

(∫ t′

0
e−ω̃s

)
Mγ(t)Mv(t)

]
for some constant C > 0. Noting that the scalar integrals above are uniformly bounded in
t′, taking the supremium over t′ ∈ [0, t] implies there exists a constant C1 > 0 such that

Mγ(t) ≤ C1

(
Mv(t)

2 +Mγ(t)Mv(t)
)
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for all t ∈ [0, T ). Similarly, for 0 ≤ t′ ≤ t < T as above, from (33)(ii) we get

‖v(t′)‖H1 ≤ Ce−ωt′ ‖v(0)‖H1 + C

∫ t′

0
e−ω(t′−s) ‖(I −Π)RF (γ(s), v(s))‖H1 ds.

Since (I −Π) is clearly a bounded linear operator on H1, we have by the above work that

‖(I −Π)RF (γ(s), v(s))‖H1 ≤ C
(
‖v(s)‖2H1 + |γ(s)|‖v(s)‖H1

)
≤ C

(
e−2ω̃sMv(t)

2 + e−ω̃sMγ(t)Mv(t)
)

Consequently,

‖v(t′)‖H1 ≤ Ce−ωt′‖v(0)‖H1+Ce−ωt
′

[(∫ t′

0
e(ω−2ω̃)sds

)
Mv(t)

2 +

(∫ t′

0
e(ω−ω̃)sds

)
Mγ(t)Mv(t)

]

Recalling that ω̃ ∈ (ω/2, ω), we find∫ t′

0
e(ω−2ω̃)sds ≤ 1

2ω̃ − ω

∫ t′

0
e(ω−ω̃)sds ≤ 1

ω − ω̃
e(ω−ω̃)t′ .

It follows that

‖v(t′)‖H1 ≤ C
(
e−ωt

′‖v(0)‖H1 + e−ωt
′
Mv(t)

2 + e−ω̃t
′
Mγ(t)Mv(t)

)
and hence that

eω̃t
′‖v(t′)‖H1 ≤ C

(
e(ω̃−ω)t′‖v(0)‖H1 + e(ω̃−ω)t′Mv(t)

2 +Mγ(t)Mv(t)
)

Noting that the exponentials on the right hand side above are uniformly bounded above in
t′, we find by taking the supremum in t′ ∈ [0, t] that there exists a constant C2 > 0 such
that

Mv(t) ≤ C2

(
‖v(0)‖H1 +Mv(t)

2 +Mγ(t)Mv(t)
)
.

Next, we claim that if ‖v(0)‖H1 and T > 0 are such that

Mv(t) ≤
1

2C1
∀t ∈ [0, T )

then T = +∞ and, in particular, Mv(t) is well defined and uniformly bounded for all t ≥ 0.
To see this, note that by the above condition on T we have

Mγ(t) ≤ 1

2
Mγ(t) + C1Mv(t)

2

and hence that
Mγ(t) ≤ 2C1Mv(t)

2 ∀t ∈ [0, T ).
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Inserting this into the bound for Mv(t) gives

Mv(t) ≤ C̃
(
‖v(0)‖H1 +Mv(t)

2 +Mv(t)
3
)
∀t ∈ [0, T ).

where C̃ > 0 is some constant. Now, define the polynomial

P (r) = r3 + r2 − 1

C̃
r + ‖v(0)‖H1

and note the above inequality states that P (Mv(t)) ≥ 0 for all t ∈ [0, T ). One can easily
check that for ‖v(0)‖H1 sufficiently small, P (r) has two consecutive positive roots r1, r2

satisfying
0 < r1 = C̃‖v(0)‖H1 +O(‖v(0)‖2H1)� r2

with P (r) ≥ 0 for r ∈ [0, r1] ∪ [r2,∞) and P (r) < 0 for r ∈ (r1, r2). Taking C̃ > 1 above, it
follows that

Mv(0) = ‖v(0)‖H1 < r1

so that, by continuity of Mv(t) on t, we have

Mv(t) ≤ r1 ≤ 2C̃‖v(0)‖H1

for all t ∈ [0, T ), provided that ‖v(0)‖H1 is sufficiently small. In particular, if we choose
‖v(0)‖H1 sufficiently small that r1 <

1
2C1

then the above argument can be continued to give
T = +∞. We conclude that if ‖v(0)‖H1 is sufficiently small, then there exists a constant
C > 0 such that Mv(t) ≤ C‖v(0)‖H1 for all t ≥ 0 so that, in particular,

‖v(t)‖H1 ≤ Ce−ω̃t‖v(0)‖H1 ∀t ≥ 0.

This verifies that the perturbed solution u(t) converges as t→∞ to the one-dimensional
manifold M. To show that it converges to a particular element of M, recall that for all
t ≥ 0 we have

γ′(t) = O
(
‖v(t)‖2H1 + |γ(t)|‖v(t)‖H1

)
and that |γ(t)| ≤Mγ(t) ≤ 2C1Mv(t)

2. By the above bound on Mv(t) it follows that

γ′(t) = O
(
e−2ω̃t‖v(0)‖2H1 + e−ω̃t‖v(0)‖3H1

)
.

Fixing 0 ≤ t1 < t2 and integrating over [t1, t2], it follows there exists a constant C > 0 such
that

|γ(t2)− γ(t1)| ≤ C
∫ t2

t1

(
e−2ω̃t‖v(0)‖2H1 + e−ω̃t‖v(0)‖3H1

)
dt

≤ C
(

1

2ω̃
e−2ω̃t1‖v(0)‖2H1 +

1

ω̃
e−ω̃t1‖v(0)‖3H1

)
≤ C̃e−ω̃t1‖v(0)‖2H1
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provided that ‖v(0)‖H1 is sufficiently small. It follows that the sequence {γ(t)}t≥0 is a
Cauchy sequence in R and hence there exists a γ∞ ∈ R such that

γ(t)→ γ∞ as t→∞.

In particular, the above bound gives

|γ(t)− γ∞| ≤ C̃e−ω̃t‖v(0)‖2H1

so that γ(t) converges to γ∞ at an exponential rate.
Putting everything together, we have shown that the perturbed solution u(t) converges

to φ(·+ γ∞) ∈M at an exponential rate as t→∞, as claimed.

4.3 Discussion of the Periodic Case

Finally, let’s briefly discuss how the previous techniques might be applied in the periodic
setting. To this end, consider a PDE of the form

ut = F (u) (34)

where we assume F is a constant coefficient (in both x and t) nonlinear operator, and
suppose that (34) has a T -periodic equilibrium solution φ(x). For this discussion, we are
interested in determining the stability of φ to so-called “localized” perturbations10, i.e. to
perturbations in L2(R). The linearized operator, obtained by linearizing the right hand side
of (34) about φ is the operator

L := DF (φ)

which will be a linear differential operator with T -periodic coefficients. From our previous
work, we know the spectrum of L can be decomposed as

σL2(R)(L) =
⋃

ξ∈[−π/T,π/T )

σL2
per(0,T )(Lξ),

where the Bloch operators Lξ := e−iξxLeiξx are considered to act on L2
per(0, T ) for each

ξ ∈ [−π/T, π/T ). By Remark 6 in Section 3.2.3 above, it follows that φ′ satisfies the ODE

Lφ′ = 0. (35)

Unlined the analysis in Section 3.2.2 and Section 3.2.3, this does not imply that λ = 0 is
an eigenvalue11 of L since φ′, being T -periodic, clearly does not belong to L2(R). Rather,
(35) implies that λ = 0 is an eigenvalue for the co-periodic Bloch operator L0.

For the sake of simplicity, assume that λ = 0 is a simple eigenvalue of L0, and that
0 /∈ σp(Lξ) for any ξ 6= 0. Then as ξ is varied near ξ = 0, there exists a curve of essential

10Note if one wishes to study the stability of φ to periodic perturbations, as discussed in Section 2.3.1,
then σp(L) is purely discrete and stability may be studied in much the same way as in the above examples.

11And, recall that we already know that σp(L) = ∅ anyways.
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Figure 4: An illustration of the spectrum about a stable periodic equilibrium solution of
(34) near the origin λ = 0.

spectrum λ(ξ) ∈ σp(Lξ) near the origin which, by basic results in spectral perturbation
theory, is analytic in ξ and satisfies

λ(ξ) = λ(−ξ)

for all |ξ| � 1. It follows that if φ is to be a stable equilibrium solution of (34), then λ(ξ)
must admit a Taylor expansion for |ξ| � 1 of the form

λ(ξ) = iαξ − βξ2 +O(|ξ|3)

for some constants α ∈ R and β ≥ 0. If we assume the non-degeneracy condition β 6= 0, it
follows that12

<(σp(Lξ)) ≤ −θξ2 ∀0 < |ξ| � 1. (36)

Considering now the linear stability of φ, let ε0 > 0 be small and recall the Bloch solution
formula(

eLtv
)

(x) =

∫
|ξ|<ε0

eiξx
(
eLξtv̌(ξ, ·)

)
(x)dξ +

∫
ε0<|ξ|< π

T

eiξx
(
eLξtv̌(ξ, ·)

)
(x)dξ, (37)

where here we have separated the low- and high-Bloch number components of the integral.
If we assume that there exists a constant σ > 0 such that

<(σp(Lξ)) < −σ for all ε0 < |ξ| <
π

T
,

it follows by the generalized Hausdorff-Young (25) inequality that∥∥∥∥∥
∫
ε0<|ξ|< π

T

eiξx
(
eLξtv̌(ξ, ·)

)
(x)dξ

∥∥∥∥∥
L2(R)

≤ Ce−σt‖v̌‖L2([−π/T,π/T );L2(0,T )) = Ce−σt‖v‖L2(R),

12Concerning modeling, such a condition may be expected to hold for stable waves in diffusive, either fully
or partially, systems. In energy conserving Hamiltonian systems (such as the KdV equation (19)), rather,
spectral stability is equivalent to σ(L) ⊂ Ri. In such a case, it is not yet known how to establish nonlinear
stability through the method of linearization, and one typically relies on different methods, such as the study
of an appropriate Lyapunov functional.
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so that the second term in (37) decays exponentially fast in time. On the other hand, the
first term in (37) satisfies∥∥∥∥∥

∫
|ξ|<ε0

eiξx
(
eLξtv̌(ξ, ·)

)
(x)dξ

∥∥∥∥∥
L2
x(R)

C ≤
∥∥∥e−θξ2tv̌(ξ, x)

∥∥∥
L2([−π/T,π/T );L2(0,T )

≤
∥∥∥e−θξ2t∥∥∥

L∞ξ

‖v̌‖L2([−π/T,π/T );L2(0,T )

≤ C‖v‖L2(R)

Consequently, these calculations show the first term in (37) is only bounded in time, and
hence does not decay.

Remark 8. It is actually possible to sharpen the above estimate to yield a t−1/4 decay rate,
but this ends up being too slow to close any reasonable iteration scheme that might lead to
a nonlinear stability result.

So then, how might one go about establishing a nonlinear stability result in this case?
In a sense, we should follow the ideas in Section 4.2 and introduce an appropriate “modu-
lation” function to accommodate for the lack of decay. As expected, however, this is more
complicated in this case. To see why, observe that in Section 4.2 that a spatially uniform
translation of the front still satisfies the same boundary conditions as the front. In particu-
lar, the Lp(R) norm between any two elements of the manifold M in (30) is finite. For our
T -periodic equilibrium solution of (34), however, periodicity implies that for any γ 6= ZT
that

‖φ− φ(·+ γ)‖Lp(R) = +∞ for all 1 ≤ p <∞

In other words, a spatially uniform translation of a periodic wave is not a small, or even
bounded, perturbation in Lp(R) for any finite 1 ≤ p <∞.

To proceed, let’s think about the expected dynamics about a “stable” periodic wave φ.
Suppose φ is as in Figure 5(a), and note that we can decompose x-axis into periodic “cells”
corresponding to the periodicity of φ. If we perturb φ by a small localized perturbation
as in Figure 5(a), it is natural to expect that it effect of this perturbation has a finite
speed of propagation. In particular, at any given time each periodic cell may react to
the initial perturbation differently. To further illustrate this point, it is known that there
exists “spectrally stable” periodic traveling wave solutions to the Kuramoto-Sivashinsky
(KS) equation

ut + uxxx + uux + δ(uxx + uxxxx) = 0. (38)

While we won’t go into the details of the analysis or proof, which can be found in [BJNRZ],
it is instructive to view the dynamics of such a stable solution: see Figure 5(b). In this
figure, start at t = 0 with a stable periodic traveling wave solution of (38) and perturb it
by some small, localized “bump” around x = 130. The effect of the perturbation on the
solution tracked as time is increased: here, the green and blue curves denote the “peaks”
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Figure 5: (a)An illustration of a periodic wave φ that is perturbed by a small localized
perturbation. Here, the perturbation is in red, and the vertical dashed lines are there
to simply decompose φ into disjoint periodic “cells”. (b) The temporal evolution of a
slighty perturbed stable periodic traveling wave solution (in traveling coordinates, so the
background wave is stationary) of the KS equation (38). This picture was taken from the
work [BJNRZ].

and “troughs” of the solution as it evolves over time13. What we observe is that the effect
of the perturbation has a finite speed of propagation, signaling some sort of “hyperbolicity”
in the system. Indeed, for a fixed time t > 0 the solution is essentially unchanged outside of
the outermost dashed red lines, while between the innermost dashed red lines we essentially
see a copy of the original wave. However, upon careful inspection one will observe that the
periodic wave between the inner most dashed red curves is slightly out of phase with the
original wave: indeed, between the “left” two dashed red lines and the “right” two dashed
red lines, we can see that the solution is undergoing a spatially localized phase shift, and
that this phase shift remains small and spreads out over time. For details, see [BJNRZ].
If we are interested in proving the stability14 of the periodic wave depicted in Figure 5(b),
the above considerations motivate introducing a modulation function that would allow φ
to change differently on each periodic cell, i.e. our modulation function should be spatially
dependent!

In summary, if u0 is near φ in L2(R), the above discussion motivates decomposing the
associated solution u(t) with initial data u0 as

u(x, t) = φ(x+ ψ(x, t)) + v(x, t)

where here ψ is our spatially dependent modulation function. The fact that ψ depends
on x suggests that it will solve a system of PDE′s that are coupled to the evolution

13We are thus recording the evolution of the periodic structure of the wave, and not its shape or magnitude
between consecutive local max and min’s.

14Here, the sense of stability has to be defined appropriately. In this context, the notion of “nonlinear
space-modulated stability” has been shown to be powerful. See [JNRZ].
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equation for v. Compare this to the analysis in Section 4.2, where the evolution for the
nonlinear perturbation v couples to an ODE satisfied by the x-independent modulation
γ(t). Consequently, establishing nonlinear stability of periodic patterns in this context is
considerably more complicated than other examples we have considered in these notes.
Thankfully, this is the subject of some of the presentations at this workshop, so I refer
students to the presentation notes prepared by your peers.
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