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Motivating Application: Roll Waves
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H/L << 1

In small amplitude limit
u=h—-1 Ju<<1

can be modeled as periodic traveling wave solutions of generalized
Kuramoto—-Sivashinksi (gKS) equation

Oeu+ udeu +ediu+ 6 (Ru+0u*) =0, &2 +46°=1.
Here, 0 = 7 = ¢ = 0 (classic KS) while § =0 = ¢ = 0 (KdV).
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Linear Dispersion

Seeking soln. of form u(x, t) = up + ve* ™, uy € R yields

A+ iugk — ick® + 6 (—k* + k*) = O(v).

o All constant solutions unstable to low-frequency perturbations.
e Dissipation stabilizes constant solutions at higher frequencies.
e Dispersion is neutral at this level.

BUT, long time dynamics of solutions seems dominated by traveling
pulse trains of individually unstable solitary waves (whose separation
distance is not too great).

Possible Interpretation: There should exist stable periodic waves.

Interpretation further motivated by “observability” of such wave
trains.

Mathew Johnson (University of Kansas) Stability KS Wave Trains 6/15/2012 4/ 66



Traveling waves u(x, t) = t(x — ct) of (gKS)
ur + uuy + 5uxx F Elx T Usxx = 0
satisfy ODE

1
—cu+ " +et” 40U + 502 =q, qeR

Periodic orbits generated through Hopf bifurcation from one of the
two constant states.

Figure: (Left) Here, period X = 6.3, ¢ = 0.2, g = 0.04. (Right) Same, but with
g € [1,30] "N and 06 free.
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Numerical Determination of o(L£) for ¢ = 0.2, § = 0.04
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Numerical Determination of o(L£) for ¢ = 0.2, § = 0.04

STOP!
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Note: Spectral pictures generated with SpectrUW package based on
Hill's method (Galerkin-based truncation).

Figure: Depiction of lower (inner bold) and upper (outer bold) stability
boundaries.
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General Stability Boundaries

gKS stability boundaries
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Figure: Plot of the stability boundaries (in the period X) versus the parameter
€ =+/1 — 42, with shaded regions correspond to spectrally stable periodic
traveling waves. In the limits ¢ — 0 and ¢ — 1, we see the existence of only one
band of spectrally stable periodic traveling waves.
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Nonlinear Stability: Picture Proof!

Spectrally Stable Example:

ool [

15¢

Time
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Spectrally Stable Example (w/ “Stronger” Perturbation):

I

80 100 120 140 160 180

u(x, t) =~ u(x + ¢(x, t)) where ¢ ~ f”convecting Gaussians,” i.e.
o(x, t) ~ small amplitude, localized “bump”

=} 5
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Nonlinear Stability Result:

Theorem (Barker, J., Noble, Rodrigues, Zumbrun (preprint 2012))

Let u be a “spectrally stable” periodic traveling wave solution of gKS
and let Ti(x, t) be another solution of KS such that

Eo := [|u(x,0) — @l j1ype
is sufficiently small. Then 3 1) : R? — R such that
[G(- =¥, 1),t) = Ull ey > [1(e L)l oy S (1 + t)"*E
Moreover, we have L' N H* — L> nonlinear stability estimate
[a(-, t) = B0 ) oy > 190, D)l ooy < CEo.

Remark: “Spectral stability” carefully defined here.... see paper.
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Verification of Spectral Stability Hypothesis:

(Joint w/ P. Noble, L.M. Rodrigues, & K. Zumbrun — preprint 2012)
Consider gKS

Up + Uly + Usx + 0 (Unx + Uspxx) =0, 0 >0

In “thin film"” regime 0 < § < 1, gKS singular perturbation of KdV

equation
Us + Uly + Uy = 0.

e Fact: KdV wave trains are marginally stable, i.e.
SpeCL2(R)(Lde) C Ri.

Are “near-KdV wave trains” of gKS spectrally stable?

Some (but certainly not all) are!!!
o Result relies on numerical computation of elliptic integrals.... only

precise up to machine error... not a thm :-(

° Q:
°o A:
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Expansion of “near KdV" waves (Formally)

Seek traveling wave solutions of form u(x, t) = u(x — ct) of
U + Uty + oo + 0 (U + Uoox) = 0.
Profile & satisfies ODE
(=) +0"+o(@"+0"™")=0.
When § = 0, u satisfies KdV, so is of form

Uo(x; ¢, ki, k, ug) = up + 12k*k” cn® (k(w + ¢), k)
Co = U + 8K%k* — 4K?

Now, expand

¢ =co+0c+ O, = U(x)+Uy(x)+ O(6?)
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Expansion of “near KdV" waves (Formally)

O(1) egn. holds by choice of U.

O(0) egn. gives

MU, = Uy — U — Ug"”
where M is Fredholm w/ index zero and

ker (M) = span{1, Up}.

Have 2K(k)/x per. soln. provided that
(W) = (W)

k=G(k):

only KdV cnoidal waves with x and k functionally dependent as
above extend to “near KdV" periodic waves.

Gives selection criterion
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Q: How to verify spectral stability assumption for above “near KdV"
waves?
A: Given § > 0, fix (WLOG) 1-periodic traveling wave o = T,
analyze L?(IR) spectrum of
Llb] = 0x(c — 1) — 02 — 5 (92 + %)
Have spectral stability iff
o(L[a]) c {zeC:R(z) <0}.

First problem: spectrum is purely continuous.
Characterization: )\ € o(L[1]) iff 3¢ € [, 7) such that

{ e " Lu]ev = \v
v(x+1) = v(x)

has a non-trivial solution, i.e. if \ is a 1-periodic eigenvalue of “Bloch
operator”

Leln] := e Lla]e™ : H.([0,1]) € L2..([0,1]) — L2..([0,1]).

per per
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Bar & Nepomnyashchy (Phys. D, 1995, hereafter BN) did following:
e For fixed £ and “near KdV" wave train us assume spectral curves
of Spectral problem
Eg[[lg]v = A\v
can be expanded as

A(8,6) = Xo(§) + 0N (€) + O(67)

where A\o(&) € spec(Lkav ¢)-
e Using...
(1) expansions of KdV (cnoidal) wave trains in §, and
(2) fact that e-values and e-ftns. of L4, ¢ are EXPLICITLY known V¢,

find EXPLICIT formula for A1(&) in terms of elliptic integrals and
show (numerically)

maxﬁﬁ()\l(f)) <0

for periods X € (8.49,26.17).
@ BN conclude spectral stability for “near KdV" wave trains of
these periods!
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Our own numerics suggest similar stability boundaries:

gKS stability boundaries
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25

20

WM

0 0.2 0.4 0.6 0.8
€

Figure: Plot of the stability boundaries (in the period X) versus the parameter
€ =1 — 62, with Here, § = /1 — &2 is fixed by the choice of £ and the shaded
regions correspond to spec. stable wave trains.

For0<1—e<1, X (¢) =85 and Xy(e) ~ 26.
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Computations of BN and our numerics BOTH omit small
neighborhood of the origin!!!!

e In BN, expansion

A6, €) = No(€) + 6A1(€) + O(6?)

only valid for 0 < § < |¢] near A = 0.

e Further, BN only “formally” do existence theory: requires
geometric singular perturbation theory to make rigorous...

e We give high-precision computation down to very small, but
positive, § = omits O(d x TOL) nbhd. of origin.

To show stability, need to resolve neighborhood of origin: proceed in
three steps...

(1) Study region 0 < § < |¢| (BN region).
(2) Study region 0 < |[£| < § (weak, large scale perturbations).
(3) Study in between, i.e. C71¢| <6 < Cl¢|.
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Evans Function Computations:

3 C-analytic ftn. E (Evans ftn.) such that
A € spec (Le[ts]) <= E(N,E,9) =0.
Fact: For (|A],|£],9) < 1, up to non-zero factor

E(/\7 57 5) = Ekdv(>‘a 5) + 5E1()‘7 5) + 0 (62(62 + )‘2)) :

Up to non-zero factor,

e
—~
>

E(\E,6) = — iay(€ +75H —ifY%)+H.O.T.

-~

Ekav(X,6)

Jj=1

where v € R, iaj(€)§ € Ri are distinct roots of Eyg,(-, &) near
(A,€) = (0,0), and (3 are real or C-conjugate.
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In BN Range (0 < § < [¢]):

Equation E(), &, 0) = 0 reads

[T = ia(€)¢ 751_[ —if%)+ H.O.T.=0.
Setting & = /&, A = \/& gives

H( —ioj(§ +75H — i)+ H.O.T.=0

Jj=1

When 6 = 0, get H L (A= iq;(€)) = 0. Since a;(&) are distinct,
implicit function theorem gives expansions

om0 = Bl = ) | s
MED) = io5(8) =0 @ — ey T O
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In BN Range (0 < § < [¢]):

Using even symmetry of R(\;(£,9)) and (&), follows

( j(0) = B)(e5(0) = 53)
T T (04(0) = ax(0))

Fact: R(\;(&,6)) < 0 for each iff “Subcharacteristic Conditions” hold
(S1) 3,32 € R are distinct.
(S2) a1(0) < B? < an(0) < B2 < a3(0).
(S3) v >0.

Fact: Numerics (elliptic function calculations) of BN = for periods
X € (8.49,26.17), have

R(A;(€,0)) = O(5€2).

max Re(\;(€,6)) <0
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In Range 0 < [¢] < 0:

As before, equation E(), &, 0) = 0 reads
[T = iay(€)¢ +75H —if%) + H.O.T. =0.

Setting A = \/6, £ = £/0 gives

3

T (3= i 55§)+7H — %)+ H.0.T. = 0.

j=1

When & =0, get A2 (A +7) = 0.
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In Range 0 < [¢] < 0:

Implicit Function Theorem gives three roots:

R (Me(&,6)) = (— )k+1§5HJ 12? ﬁ2j( )

A3(€,0) = =76 + o(9).
if (51)-(S3) hold, where recall

+0(&%), k=1,2

(S1) 3%, 32 € R are distinct.
(52) 1(0) < B < a2(0) < 33 < a3(0).
( ) 7> 0.
act: R(\;(£,9)) < 0 for each j if (S1)-(S3) hold!!!

R (Ak(§,0)) <0 for k =1,2,3 by numerics of BN!!!
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In Between... Have No Crossing!

e Fact: If (S1)-(S3) hold, then VC > 1 35 > 0 such that

CHel <6 < Clel
implies
spec,(L¢) N B(0,7) NR # 0
iff \=¢=0.
e Proof: Simple symmetry argument.
Thus, numerics of BN =- have spectral stability near origin!!!
.. some near KdV-wavetrains are spectrally stable!!!!

In fact, they satisfy hypothesis of our nonlinear stability theorem

.". some near KdV-wavetrains are nonlinearly stable!!!!
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Relation to Whitham Equations

Introduce slow coordinates (X, T) = (ex,et), € < 1, set § = d¢ and
notice in slow coordinates KdV-KS reads

Oru+ udxu + 2% u + 0 (20xu + e*oxu) = 0.

Performing WKB expansion in u(X, T), Noble & Rodrigues showed
Whitham system for KdV-KS in singular 6 — 0" limit is

Ok + Ox (kco(ug, K, k)) =0
U2
or <Uo> + Ox <70> =0
Us

or <7> +ox <%3 - 3(‘;"’)2> =5 () = ((W)))

§ — 0 = characteristics a;(uo, %, k) € R, j = 0, 1,2 distinct (strict
hyperbolicity of KdV Whitham!).
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Relation to Whitham Equations

§ — o0 obtain relaxed system

Otk + Ox (kco(uo, K, k)) =0

U2
8T <Uo> + 8)( <70> =0

where k = G(k). This is exactly Whitham for KdV-KS (fixed ¢) in
limit 6 — 0.

Hyperbolicity of above a necessary condition for spectral stability
“near-KdV" waves for 4, i.e. above should have eigenvalues

ﬁO(UO, k) < ﬁl(U(), k)
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Relation to Whitham Equations

Relaxation theory = necessary condition for stability of “near KdV"
wave is
ap < B <arp <P < az

where above «j, §; are evaluated at limiting KdV cnoidal wave Uj.

This motivates subcharacteristic condition (S1). Can also motivate
(52)-(S3), see paper.

Mathew Johnson (University of Kansas) Stability KS Wave Trains 6/15/2012 65 /



Thank you!

Papers & references available at
http://www.math.ku.edu/ matjohn
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