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STABILITY OF SMALL PERIODIC WAVES IN FRACTIONAL
KdV-TYPE EQUATIONS∗
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Abstract. We consider the effects of varying dispersion and nonlinearity on the stability of
periodic traveling wave solutions of nonlinear PDEs of KdV type, including generalized KdV and
Benjamin–Ono equations. In this investigation, we consider the spectral stability of such solutions
that arise as small perturbations of an equilibrium state. A key feature of our analysis is the
development of a nonlocal Floquet-like theory that is suitable to analyze the L2(R) spectrum of the
associated linearized operators. Using spectral perturbation theory then, we derive a relationship
between the power of the nonlinearity and the symbol of the fractional dispersive operator that
determines the spectral stability and instability to arbitrary small localized perturbations.
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1. Introduction. In this paper, we are concerned with the spectral stability and
instability of periodic traveling wave solutions u(x, t) = u(x − ct) of a class of scalar
evolution equations of the form

(1.1) ut +
(−Λαu+ up+1

)
x
= 0, x, t ∈ R,

where subscripts denote partial differentiation, u = u(x, t) is a real-valued function,
and the pseudodifferential operator Λ =

√−∂2
x, referred to as Calderon’s operator, is

of order one and is defined by its Fourier multiplier as Λ̂u(k) = |k|û(k); throughout
our analysis, the circumflex denotes the Fourier transform taken either on R or an
appropriate one-dimensional torus, depending on the context. By inspection of the
Fourier symbol, we see that Calderon’s operator can alternatively be defined as Λ =
H∂x, where H denotes the Hilbert transform being applied on either the line or the
torus, depending on the context, and in the x variable. Here, we consider α > 1

2
and either p ∈ N or p = m

n with m and n being even and odd natural numbers,
respectively; Remark A.1 in Appendix A discusses the purposes of these restrictions.

Equations of the form (1.1) arise naturally in the modeling of unidirectional prop-
agation of weakly nonlinear dispersive waves of long wavelength, in which case u rep-
resents the wave profile or its velocity and the variables x and t are proportional to
the distance in the direction of propagation and the elapsed time, respectively. In this
context, the parameter α > 0 characterizes the linear dispersion about the zero state;
in particular, letting c(ξ) denote the phase velocity of plane waves with frequency ξ,
we find the dispersion relation c(ξ) = |ξ|α for equations of the form (1.1). It is the
goal of this paper to derive conditions on the dispersion parameter α and the power
p of the nonlinearity for which the small amplitude periodic traveling wave solutions
of (1.1) are stable.
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Arguably the most common and well-studied example of an equation of form (1.1)
is the generalized KdV equation

(1.2) ut + uxxx +
(
up+1

)
x
= 0

corresponding to α = 2. When p = 1, (1.2) was proposed by Korteweg and de Vries
[30] in 1895 to model the unidirectional propagation of surface water waves of small
amplitude and long wavelengths in a channel. When p = 2, (1.2) corresponds to the
modified KdV equation, which arises as a model for large amplitude internal waves in
a density stratified medium, as well as for Fermi–Pasta–Ulam lattices with bistable
nonlinearity. In both these cases, the PDE is completely integrable and hence the
Cauchy problem can, in principle, be completely solved via the inverse scattering
transform.

Another important class of equations of form (1.1) arises when α = 1, in which
case we recover the generalized Benjamin–Ono equation

(1.3) ut +
(−Hux + up+1

)
x
= 0.

When p = 1, Benjamin [5] and Ono [33] independently derived (1.3) as a model for the
unidirectional propagation of internal waves in deep water. In this case, (1.3) is also
completely integrable. Further examples with varying values of α can be derived in
the context of shallow water theory by assuming different order relationships between

the small quantities γ := a
h and β := h2

λ2 , where h denotes the depth of the water
at rest and a and λ denote characteristic amplitudes and wavelengths of the waves
searched for, respectively, corresponding to modeling in the small amplitude and small
wavelength regime. Of particular interest, although outside the scope of our analysis,
we point out that in the case1 α = − 1

2 , (1.1) was recently shown by Hur [23] to
approximate up to quadratic order the surface water wave problem in two spatial
dimensions in the infinite depth case, hence generalizing Whitham’s equation in [36].

The stability of the solitary wave solutions of equations of the form (1.1) have
a long and rich history, dating back to the novel work of Benjamin in [6], in which
the stability of such waves in the case α = 2 was established for p < 4. The stability
analysis for α ≥ 1 was carried out by Bona, Souganidis, and Strauss in [7], where
the authors extended the seminal work of Grillakis, Shatah, and Strauss [19, 20] to
equations of form (1.1), where, most notably, the symplectic form in the Hamiltonian
structure fails to be invertible. In [7], the authors establish the nonlinear orbital
stability of the solitary wave solutions of (1.1) when α ≥ 1 for p < 2α and the
instability of such solutions for p > 2α.

In contrast to its solitary wave counterpart, the stability theory for T -periodic
traveling wave solutions of equations of the form (1.1) has received considerably less
attention, even in the classical case α = 2, and this theory is still far from complete.
Within this context, stability results typically fall into one of two categories: spectral
stability to perturbations in Cb(R) or L2(R) (see [9, 11, 13, 15, 21]), and nonlinear
orbital stability to perturbations in L2

per([0, nT ]) for some n ∈ N (see [1, 2, 3, 10, 15,
16, 14, 25]). The majority of the nonlinear stability results restrict to the co-periodic
case, i.e., perturbations in L2

per([0, nT ]) when n = 1, a clearly very restrictive class of
perturbations, in which case authors are often able to use adaptations of the stability
theory in [19, 20] to establish orbital stability. The only examples the author is aware
of that establishes orbital stability for n > 1 are due to Deconinck and Nivala [15, 16],

1Notice that the operator ∂xΛα is nonsingular for all α ≥ −1.
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where the authors consider the KdV and mKdV equations, relying heavily in both
cases on the complete integrability of the governing equations.

Concerning the spectral stability of such solutions, Bottman and Deconinck [13]
established the spectral stability in L2(R) of periodic traveling wave solutions of the
classic KdV equation (α = 2 and p = 1), while Deconinck and Nivala [15, 16] estab-
lished such a result for the modified KdV equation (α = 2 and p = 2). For more
general power law nonlinearities, when α = 2 Bronski and Johnson [9] analyzed the
spectral stability of such periodic traveling waves of (1.2) and derived there a geomet-
ric index for the stability and instability of such waves to perturbations in L2

per([0, nT ])
with n � 1, while Haragus and Kapitula [21] established the spectral stability of such
waves of sufficiently small amplitude when p < 2 and spectral instability when p > 2;
as mentioned previously, it is this class of small amplitude periodic waves that we will
be concerned with here.

It is important to note that all the periodic stability analyses described above are
valid only in the local case α = 2. Such results for α ∈ (0, 2) seem to be very few. Most
notably, in [3] Pava and Nabali investigate the nonlinear stability of periodic traveling
wave solutions to equations of the form (1.1) when subject to perturbations with the
same period as the underlying wave.2 In particular, they establish the nonlinear
stability of periodic traveling waves of the Benjamin–Ono equation, corresponding to
α = 1 and p = 1 in (1.1) to perturbations with the same period as the underlying
wave. More recently, Hur and Johnson in [24] verified for α ∈ (13 , 2] and p = 1
the nonlinear stability of T -periodic traveling wave solutions of (1.1) to T -periodic
perturbations when the underlying wave arises as a constrained energy minimizer.
As far as the author is aware, these analyses are the only rigorous results concerning
the nonlinear stability of periodic waves in equations of the form (1.1) when the
dispersive operator is nonlocal. Furthermore, the author is not aware of any rigorous
results concerning the spectral stability of periodic waves in equations of the form
(1.1) when α �= 2.

It is the intent of the current paper to investigate the spectral stability of peri-
odic traveling wave solutions of (1.1) of sufficiently small amplitude when subject to
arbitrarily small localized, i.e., integrable, perturbations. Our main result, stated in
Theorem 3.4 below, states that such small amplitude periodic traveling wave trains
are spectrally stable if α > 1 and 1 ≤ p < p∗(α), where the function p∗(α) is defined
explicitly in (3.7) below, and is spectrally unstable if either α ∈ (12 , 1) or α > 1 and
p > p∗(α). A plot of p∗(α) is given in Figure 1.1, and from this it is evident that for p
sufficiently large all such small periodic traveling wave solutions are necessarily spec-
trally unstable. Furthermore, for p ∈ (1, Pmax), where Pmax := maxα≥1 p

∗(α) ≈ 2.19,
there exist numbers α−(p) < α+(p) such that such small periodic traveling waves
are spectrally stable provided α ∈ (α−(p), α+(p)) and are spectrally unstable if
α /∈ [α−(p), α+(p)]. The fact that there is an upper bound on the admissible dis-
persion parameters α corresponding to stability for a given p ∈ (1, Pmax) is a striking
new feature in the periodic stability analysis of models of the form (1.1), and it stands
in direct contrast with the solitary wave theory. It is likely that this is due to the
fundamental difference between the nature of disperison on the line and “dispersion”
on the circle: here, we do not attempt to give an explanation for this difference and
leave this instead as an interesting open question.

Concerning specific models of the form (1.1), in the classical case α = 2, Theo-
rem 3.4 recovers the result of Haragus and Kapitula [21] that such waves are spectrally

2In fact, they consider more general nonlocal dispersive operators than what are considered here.
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Fig. 1.1. A plot of the critical nonlinearity p∗(α) as a function of the dispersion parameter
α, plotted for α ≥ 1. Notice that p∗(α) decreases monotonically to 1 as α → ∞. The shaded area
corresponds to the region of stability for the small amplitude periodic traveling waves considered
here. For α ∈ (1/2, 1), we see p∗(α) < 1 and hence all such small periodic traveling waves are
spectrally unstable.

stable if 1 ≤ p < 2 and are spectrally unstable if p > 2. Furthermore, since p∗(1) = 1,
it follows that our analysis is not sufficient to conclude spectral stability or instability
in the classical Benjamin–Ono equation, corresponding to α = p = 1 in (1.1): see
Remark 3.3 for more details. Finally, fixing the nonlinearity p instead, we see that
when p = 1 all such small periodic traveling waves are spectrally stable for all α > 1,
while when p = 2 such waves are spectrally stable if α ∈ (2, 4) and are spectrally
unstable if α /∈ [2, 4]. It is important to note that our analysis demonstrates that all
such small T -periodic traveling wave solutions of (1.1) are spectrally stable to small
T -periodic perturbations, so that the spectral instability detected in Theorem 3.4
is necessarily of sideband type, occurring in L2

per([0, nT ]) for n > 1, and is hence
impossible to detect by co-periodic stability analyses.

While our analysis is similar to that given in [21] in the local case α = 2, relying on
perturbation arguments of the spectrum from the easily analyzed constant state, it is
complicated by the facts that (1) the existence theory no longer follows by elementary
phase plane analysis, and (2) the absence of a suitable Floquet theory for nonlocal
differential equations with periodic coefficients, which is necessary to analyze the
essential spectrum of the linearized operators obtained from linearizing (1.1) about
a given periodic traveling wave. In the forthcoming analysis, we resolve (1) by using
a Lyapunov–Schmidt reduction argument similar to that given in [22] in the context
of the fifth order Kawahara equation. For (2), we utilize the inverse Bloch–Fourier
representation of functions in L2(R), which is well known in the analysis of Schrödinger
operators with periodic potentials [34] and has been extensively used in the stability
analysis of periodic wave trains in dissipative systems (see [4, 26, 27, 28, 18, 32] and
references therein), to show that, even in this nonlocal setting, the essential spectrum
of the linearized operators acting on L2(R) can be continuously parameterized by the
eigenvalues of a one-parameter family of Bloch operators acting on a periodic domain.
This spectral characterization extends that introduced by Gardner [18] in the local
setting and is valid for considerably more general nonlocal operators than what is
considered here.
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The outline of this paper is as follows. In section 2, we prove the existence
and determine asymptotic expansions of periodic traveling wave solutions of (1.1)
of sufficiently small amplitude. The existence argument is based on an appropri-
ate Lyapunov–Schmidt reduction argument, the details of which are included in
Appendix A. Section 3 contains our main stability results, beginning with a care-
ful characterization of the essential spectrum of the linearized operators acting on
L2(R) in terms of the eigenvalues of a one-parameter family of Bloch operators acting
on periodic functions. We then use spectral perturbation arguments to analyze the
spectrum of the small amplitude periodic wave by considering the associated Bloch
operators as small perturbations of those with constant coefficients obtained from lin-
earizing about the nearby constant state. As such, the restriction to periodic waves of
sufficiently small amplitude is essential in our argument. In particular, our analysis
gives no information about the stability or instability of periodic waves with large
amplitude when subject to small localized perturbations. Finally, we conclude with
an appendix in which we give the proofs of the existence result and the Bloch-wave
decomposition.

2. Existence of periodic traveling waves. In this section we analyze the set
of periodic traveling wave solutions of (1.1) of the form

u(x, t) = u(x− ct), c ∈ R,

where the function u(·) is a real-valued periodic function of its argument. Due to the
scaling properties of (1.1) we can without loss of generality assume that c = 1, in
which case such solutions of (1.1) arise as stationary solutions of the PDE

(2.1) ut +
(−Λαu− u+ up+1

)
x
= 0,

or, equivalently, after performing a single integration, solutions of the nonlocal profile
equation

(2.2) −Λαu− u+ up+1 = b,

where b ∈ R is a constant of integration taken to be in general nonzero.
We begin by considering the equilibrium solutions of (2.2) for |b| � 1. Notice

when b = 0, there are in general two nonnegative equilibrium solutions u = 0 and
u = 1. In the classical case when α = 2, it follows by straightforward phase plane
analysis that in the (u, u′) phase plane, u = 0 is a saddle point associated with a
homoclinic orbit (solitary wave), while the equilibrium u = 1 is a nonlinear center.
Thus, when α = 2 and b = 0 it is clear that there exists a one-parameter family of
periodic orbits

{
(uγ , u

′
γ)
}
γ∈[0,1)

of period Tγ such that

lim
γ→0+

Tγ =
2π√
p
, lim

γ→1−
Tγ = +∞.

Moreover, these qualitative features persist for |b| � 1.
When α �= 2, however, this classical picture breaks down as we can no longer

make sense of the phase space in the same way. Nevertheless, for |b| � 1 there exists
a unique equilibrium solution u = Qb of (2.2) continuing from Q0 = 1; indeed, a
straightforward calculation provides the expansion

Qb = 1 +
1

p
b− p+ 1

2p2
b2 +O(|b|3),
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valid for |b| � 1. Seeking nearby periodic solutions of (2.2), we set u(x) = P (kx),
where P is 2π-periodic and k > 0 denotes the wave number, and require that P and
k satisfy the rescaled nonlocal profile equation

−kαΛαP − P + P p+1 = b

posed on a 2π-periodic domain. Here, we consider for each s > 0 the operator Λs

as being defined on the torus. In particular, we consider Λs as a closed operator on
L2(R/2πZ) with dense domain Hs(R/2πZ) being defined via Fourier series as

(2.3) Λsf(x) =
∑

k∈Z\{0}
|k|seikxf̂(k), s ≥ 0.

It is clear from this definition that Λs is invertible for each s > 0 when restricted to
the mean-zero subspace of Hs(R/2πZ), and we define its inverse Λ−s on this subspace
via Fourier series as

Λ−sf(x) =
∑

k∈Z\{0}

eikxf̂(k)

|k|s , s > 0;

see [35] for a recent interesting discussion of Λs acting on the torus. With these
definitions, for α > 1

2 one can use a Lyapunov–Schmidt reduction to verify the ex-
istence of a two-parameter family of small amplitude even periodic traveling wave
solutions ua,b of (2.2) existing in a neighborhood of the equilibrium solution u = Qb;
see Appendix A for details.

In the parameterization of the periodic solutions ua,b(x) = Pa,b(ka,bx) of (2.2)
given by Theorem A.1, the functions Pa,b are 2π-periodic even solutions of the rescaled
nonlocal profile equation

(2.4) −kαa,bΛ
αv − v + vp+1 = b

such that P0,b = Qb and kα0,b = (p+1)Qp
b−1; here, we have used the fact that ka,b > 0

for |(a, b)| � 1. Furthermore, the parameter a is precisely the first Fourier coefficient
Pa,b, and we have the relations Pa,b(z + π) = P−a,b(z) and ka,b = k−a,b valid for all
|(a, b)| � 1. Taking into account the translation invariance of (2.2), it follows that
for a fixed α > 1

2 we can find a three-parameter family of small amplitude periodic
traveling wave solutions of (2.1).

A key feature of the functions Pa,b and ka,b described in Theorem A.1 is that these
depend analytically on a and b for |(a, b)| � 1. The next lemma exploits this fact to
provide us with explicit expansions of the functions Pa,b and ka,b valid for sufficiently
small a and b. These expansions are crucial in the forthcoming stability analysis.

Lemma 2.1. For sufficiently small a, b ∈ R and α > 1
2 , the functions Pa,b and

ka,b in Theorem A.1 can be expanded as

Pa,b(x) = Qb + cos(z)a+
p+ 1

4

(
1

2α − 1
cos(2z)− 1

)
a2 +O(|a|(a2 + b2)),

kαa,b = kα0,b −
p(p+ 1)(2α(p+ 3)− 2(p+ 2))

8(2α − 1)
a2 +O(|a|3 + |b|3),

where kα0,b = (p+ 1)Qp
b − 1.
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Proof. Taking b = 0 for now and recalling Theorem A.1, we begin with the
following small amplitude ansatz for Pa,0 and ka,0:

Pa,0(z) = 1 + a cos(z) + a2v2(z) + a3v3(z) +O(a4),

kαa,0 = p+ a2k1 +O(a4),

where each vj is even and 2π-periodic in the z variable. Substituting these expansions
into the profile equation (2.4) yields a hierarchy of compatibility conditions. The O(1)
equation is trivially satisfied, while the O(|a|) equation reads

(−Λα + 1) cos(z) = 0,

which again holds. The O(a2) equation now reads

p (−Λα + 1) v2 = −p(p+ 1)

4
(1 + cos(2z)),

which, using (2.3), is seen to have even solutions of the form

v2(z) =
p(p+ 1)

4

(
1

2α − 1
cos(2z)− 1

)
+A cos(z)

for any A ∈ R. Notice, however, that we must take A = 0 by the definition of the
parameter a. Continuing to the O(a3) equation, we find

p (−Λα + 1) v3 = k1 cos(z)− p(p+ 1)2

8(2α − 1)
(cos(z) + cos(3z)) +

p(p+ 1)2

4
cos(z)

− p(p− 1)(p+ 1)

24
(3 cos(z) + cos(3z)) ,

which is readily seen to have a resonant solution containing a term proportional to
z sin(z) unless

k1 =
p(p+ 1)2

8(2α − 1)
− p(p+ 1)2

4
+

p(p− 1)(p+ 1)

8
,

i.e., unless k1 is chosen so that

k1 = −p(p+ 1) (2α(p+ 3)− 2(p+ 2))

8(2α − 1)
.

This completes the expansions to the desired order when b = 0. The expansions when
|b| � 1 are obtained similarly.

3. Spectral stability to localized perturbations. We are now ready to begin
discussing the stability analysis of the small amplitude periodic solutions Pa,b(ka,b·)
constructed in the previous section under the flow induced by the PDE (2.1). As
mentioned in the introduction, we are interested here in the spectral stability of such
waves when subject to small localized, i.e., integrable, perturbations on R. In the
classical case when α ∈ 2N, the associated spectral problem obtained from linearizing
about a given wave Pa,b is that for an ordinary differential equation with periodic
coefficients. As such, it is an easy calculation to see that the spectrum of this linearized
operator, considered as an operator on L2(R), is purely essential and agrees with
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the continuous spectrum. In this classical case, a common method for analyzing the
essential spectrum of the linearization is to use Floquet theory to provide a continuous
parameterization of the essential spectrum by the eigenvalues of an associated one-
parameter family of linear operators considered with periodic boundary conditions;
see [9, 11, 21], for example.

When α > 1
2 is not an even natural number, however, the linearized opera-

tor associated with Pa,b is nonlocal and hence the classical Floquet theory does not
apply. Nevertheless, we find in the next section that we can still reduce the spec-
tral stability problem on L2(R) to a one-parameter family of eigenvalue problems
with periodic boundary conditions. This characterization of the essential spectrum is
given by utilizing the Floquet–Bloch transform defined on L2(R). Once this charac-
terization is established, we use an appropriate spectral perturbation theory to ana-
lyze the eigenvalues of the associated one-parameter family of Bloch operators when
|(a, b)| � 1.

3.1. Characterization of the essential spectrum. To analyze the spectral
stability of the small amplitude periodic waves obtained in the previous section, we
fix α > 1

2 and set z = ka,bx and s = ka,bt in (2.1) to get

vs + (−|ka,b|αΛαv − v + vp+1)z,

where now Λ acts on R in the z-variable. Linearizing about Pa,b and considering
solutions of the linearized equation of the form v(z, t) = eλtv(z), with λ ∈ C and
v(·) ∈ L2(R), leads to the spectral problem

Ma,bv := ∂zLa,bv = λv

considered on Hα+1(R), where here λ denotes the spectral parameter and

La,b := |ka,b|αΛα + 1− (p+ 1)P p
a,b

is considered as a closed, densely defined operator acting on L2(R). In this case,
spectral stability is defined by the condition that the operator Ma,b has no spectrum
in the open right half plane. Notice, however, that the Hamiltonian form of the
spectral problem3 implies the spectrum is symmetric with respect to the real and
imaginary axes, and hence spectral stability is equivalent with all the spectrum of the
operator Ma,b being confined to the imaginary axis; we will discuss this more in the
next section.

In order to analyze the spectrum of the linear operator Ma,b acting on L2(R), we
recall now some facts about the Floquet–Bloch decomposition of L2(R); as mentioned
above, the standard Floquet theory does not apply for α /∈ 2N since the spectral
problem for Ma,b is not in the form of an ordinary differential equation. To this
end, notice that given any v ∈ L2(R) we can express v in terms of its inverse Bloch
representation as

v(x) =

∫ 1/2

−1/2

eiξxv̌(ξ, x)dξ,

where v̌(ξ, x) :=
∑

k∈Z
eikxv̂(ξ + k) are 2π-periodic functions of x and where v̂(ω) :=

1
2π

∫
R
e−iωzv(z)dz denotes the standard Fourier transform of v. Indeed, the above

3More precisely, the fact that the spectral problem takes the form JLv = λv, where v belongs to
some Hilbert space X and where J is skew symmetric and L is self-adjoint when acting on X.
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formulas may be easily checked on the Schwartz class by grouping frequencies which
differ by one in the standard Fourier transform representation of v:

v(z) =
∑
j∈Z

∫ 1/2

−1/2

ei(k+j)z v̂(k + j)dk =

∫ 1/2

−1/2

eikz v̌(ξ, z)dz.

The Bloch transform B : L2(R) → L2([−1/2, 1/2);L2(R/2πZ)) given by B(v)(ξ, x) :=
v̌(ξ, x) is then well defined, bijective, and continuous; in fact, using the classical
Parseval theorem we find for all v ∈ L2(R) that

(3.1) ‖v‖2L2(R) = 2π

∫ 1/2

−1/2

∫ 2π

0

|B(v)(ξ, z)|2 dz dξ

so that the rescaled Bloch transform
√
2πB is an isometry on L2(R).4

Furthermore, we find given any v ∈ L2(R) that

B (Ma,bv) (ξ, x) = Ma,b,ξ (v̌(ξ, ·)) (x),
where Ma,b,ξ : H

α+1(R/2πZ) ⊂ L2(R/2πZ) → L2(R/2πZ) is defined by

Ma,b,ξ := e−iξxMa,be
iξx, ξ ∈ [−1/2, 1/2).

The operators Ma,b,ξ are called the Bloch operators associated to Ma,b, and from
above they correspond to operator-valued symbols of Ma,b under B acting on
L2(R/2πZ). The next result relates the spectrum of Ma,b acting on L2(R) to that
of the corresponding one-parameter family of Bloch operators {Ma,b,ξ}ξ∈[−1/2,1/2),

providing us with a Floquet-like theory that is suitable for our needs.
Proposition 3.1. Consider the operator Ma,b acting on L2(R) with domain

Hα+1(R) and the associated Bloch operators {Ma,b,ξ}ξ∈[−1/2,1/2) acting on L2(R/2πZ)

with domain Hα+1(R/2πZ). Then for any λ ∈ C, the following statements are equiv-
alent:

(i) λ belongs to the spectrum of the closed operator Ma,b acting on L2(R).
(ii) There exists a ξ ∈ [−1/2, 1/2) such that λ belongs to the spectrum of the

closed operator Ma,b,ξ acting on L2(R/2πZ).
(iii) There exists a nonzero function V ∈ L2(R/2πZ) of the form V (z) = eiξzv(z)

for some ξ ∈ [−1/2, 1/2) and v ∈ Hα+1(R/2πZ) such that (Ma,b − λI)V = 0.
The proof of Proposition 3.1 is contained in Appendix B. Using this result, it

follows that

σL2(R) (Ma,b) =
⋃

ξ∈[−1/2,1/2)

σL2
per([0,2π])

(Ma,b,ξ)

so that, in particular, the Bloch transform provides a continuous parametrization
of the essential spectrum of the operator Ma,b by the discrete spectrum of a one-
parameter family of Bloch operators. As a result, rather than analyzing the essential
spectrum of the operator Ma,b directly, we can instead choose to study the point
spectrum of the operators Ma,b,ξ for each ξ ∈ [−1/2, 1/2). This investigation is the
subject of the next section.

4This is in fact a special case of a more general class of generalized Hausdorff–Young-type inequal-
ities, following from interpolating (3.1) with the triangle inequality, that are known to be satisfied
by the Bloch transform; see [29] for details.
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3.2. Analysis of the unperturbed operators. We begin by considering the
stability of the constant state P0,0 = Q0 = 1. Later, we will treat the linearized op-
erators about the nearby periodic solutions as small perturbations of those linearized
about Q0. Indeed, it is straightforward to establish the estimate

‖Ma,b,ξ −M0,0,ξ‖ = O(|a|+ |b|)
as (a, b) → (0, 0) uniformly in the Bloch parameter ξ ∈ [−1/2, 1/2). A standard
perturbation argument then guarantees the spectrum of Ma,b,ξ and M0,0,ξ stays
close for sufficiently small (a, b). More precisely, we have the following result.

Lemma 3.2. Let p ≥ 1 and α > 1
2 . For any δ > 0 there exists an ε > 0 such that

for any ξ ∈ [−1/2, 1/2) and any (a, b) ∈ R2 with ‖(a, b)‖ ≤ ε, the spectrum of Ma,b,ξ

satisfies

σ (Ma,b,ξ) ⊂ {λ ∈ C : dist (λ, σ (M0,0,ξ)) < δ} .
We now analyze the spectrum of M0,0,ξ posed on L2(R/2πZ). Since M0,0,ξ has

constant coefficients, we find by a straightforward Fourier analysis argument that

σ(M0,0,ξ) = {λ = iωn,ξ : n ∈ Z} ⊂ iR

for each fixed ξ ∈ [−1/2, 1/2), where the ωn,ξ are determined by the linear dispersion
relation

(3.2) ω(k) := kp (|k|α − 1)

through ωn,ξ := ω(n+ ξ). Notice that every λ ∈ σ(M0,0,ξ) is a semisimple eigenvalue
with algebraic and geometric multiplicity given by the number of distinct n ∈ Z such
that λ = iωn,ξ with associated eigenfunction en := einz.

To study the behavior of these eigenvalues for small (a, b) ∈ R2, notice that
the spectrum of the operator Ma,b is symmetric with respect to both the real and
the imaginary axis. Indeed, since the coefficients of Ma,b are real-valued it follows
that its spectrum is symmetric with respect to the real axis. In terms of the Bloch
operators this implies that σ(Ma,b,ξ) = σ(Ma,b,−ξ). Furthermore, noting that Ma,b

anticommutes with the isometry S : L2(R) → L2(R) given by

Sv(z) = v(−z),

we find that the spectrum of Ma,b is symmetric with respect to the origin. It fol-
lows that the Bloch operators satisfy Ma,b,ξS = −SMa,b,ξ so that σ(Ma,b,ξ) =
−σ(Ma,b,−ξ). Finally, recalling that ka,b is even in a and that Pa,b(z + π) = P−a,b(z)
for all |(a, b)| � 1 we see that σ(Ma,b) = σ(M−a,b) and that σ(Ma,b,ξ) = σ(M−a,b,ξ).
As a result, we find that the spectrum of a given Bloch operator Ma,b,ξ is symmetric
with respect to the imaginary axis. It follows then that when eigenvalues of Ma,b,ξ

bifurcate from the imaginary axis they must bifurcate in pairs resulting from colli-
sions of eigenvalues on the imaginary axis. A well-known result from the study of
Hamiltonian systems tells us that when two purely imaginary eigenvalues collide, the
collision will not result in a pair of eigenvalues bifurcating from the imaginary axis
provided both eigenvalues have the same Krein signature; see [37].

We now consider the location of the eigenvalues more carefully, in particular
watching for sets of eigenvalues that collide for a fixed ξ. Notice by the symme-
try property σ (Ma,b,ξ) = σ (Ma,b,−ξ) we may restrict our consideration to Bloch
frequencies ξ ∈ [0, 1/2]. Now, when ξ = 0 we find that

ω−1,0 = ω0,0 = ω1,0 = 0
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and

· · · < ω−3,0 < ω−2,0 < 0 < ω2,0 < ω3,0 < · · · .
Furthermore, for ξ ∈ [0, 1/2] we have

ωn,ξ ⊂
(
−∞,−3p

2

((
3

2

)α

− 1

)]
∪ [2p(2α − 1),∞) , |n| ≥ 2,

and that

ωn,ξ ⊂
[
ω∗(α),

3p

2

((
3

2

)α

− 1

)]
, |n| ≤ 1,

where

ω∗(α) =

⎧⎪⎨⎪⎩
− αp(1 + α)−(1+1/α) if α ∈ (1/2, 1),

p

2

((
1

2

)α

− 1

)
if α ≥ 1.

This naturally provides us with a spectral decomposition

σ (M0,0,ξ) = σ1 (M0,0,ξ) ∪ σ2 (M0,0,ξ)

for M0,0,ξ with{
σ1 (M0,0,ξ) = {λ ∈ C : λ = iωn,ξ for some |n| ≥ 2} ,
σ2 (M0,0,ξ) = {iω−1,ξ, iω0,ξ, iω1,ξ},

with the property that for any v in the infinite-dimensional spectral subspace associ-
ated with σ1 (M0,0,ξ) satisfies

〈L0,0,ξv, v〉 ≥
((

3

2

)α

− 1

)
p‖v‖2

uniformly for ξ ∈ [0, 1/2], where

L0,0,ξ := e−iξxL0,0e
iξx

is considered on L2(R/2πZ); in particular, it follows that all eigenvalues in σ1(M0,0,ξ)
have positive Krein signature for ξ ∈ [0, 1/2]. By a standard perturbation argument,
we find that the above properties persist for sufficiently small a and b. More precisely,
one has that for a and b sufficiently small we have a spectral decomposition

σ (Ma,b,ξ) = σ1 (Ma,b,ξ) ∪ σ2 (Ma,b,ξ)

such that

σ1 (Ma,b,ξ) ∩ σ2 (Ma,b,ξ) = ∅
for |(a, b)| � 1 and ξ ∈ [0, 1/2], where the spectral subspace associated with
σ2 (Ma,b,ξ) is three-dimensional, and the infinitely many eigenvalues associated with
σ1 (Ma,b,ξ) all have positive Krein signature. Notice this latter property implies that
all the eigenvalues in σ1 (Ma,b,ξ) are purely imaginary for |(a, b)| sufficiently small.
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It now remains to determine the location of the eigenvalues in σ2 (Ma,b,ξ). These
are smooth continuations for small a, b ∈ R of the eigenvalues iω−1,ξ, iω0,ξ, and iω1,ξ

of Ma,b,ξ. First, notice that two such eigenvalues collide if and only if ξ = 0, when
ω±1,0 = ω0,0 = 0. Furthermore, for any ξ0 ∈ (0, 1/2) there exists a constant c0 > 0
such that

|ωj,ξ − ωk,ξ| ≥ c0p, j, k ∈ {−1, 0, 1}, j �= k, ξ ∈ [ξ0, 1/2].

Consequently, these eigenvalues will remain simple and distinct under small pertur-
bations (for sufficiently small a and b) for all ξ ∈ [0, 1/2]. In particular, it follows that
for any ξ0 ∈ (0, 1/2] we have

σ2 (Ma,b,ξ) ⊂ iR, ξ ∈ [ξ0, 1/2]

for sufficiently small a and b. Thus, we have reduced the problem to locating the
eigenvalues iω±1,ξ and iω0,ξ for a, b, and ξ small.

3.3. Location of the critical Bloch spectrum. To this end, our strategy is
to project, for |(a, b, ξ)| � 1, the infinite-dimensional spectral problem

Ma,b,ξv = λv, v ∈ L2(R/2πZ)

onto the three-dimensional critical eigenspace corresponding to the three eigenvalues
bifurcating from the (λ, ξ) = (0, 0) state. More precisely, for |(a, b, ξ)| � 1 we com-
pute a suitable basis {ηj(z; a, b, ξ)}j=0,1,2 for the three-dimensional spectral subspace
associated to σ2(Ma,b,ξ) and compute the 3× 3 matrices5

Ba,b,ξ :=

[(〈
ηj(z; a, b, ξ)

〈ηj(z; a, b, ξ), ηj(z; a, b, ξ)〉 ,Ma,b,ξηk(z; a, b, ξ)

〉)]
j,k=0,1,2

and

Ia,b,ξ :=

[( 〈ηj(z; a, b, ξ), ηk(z; a, b, ξ)〉
〈ηj(z; a, b, ξ), ηj(z;α, b, ξ)〉

)]
j,k=0,1,2

,

noting then that the eigenvalues Ma,b,ξ in a neighborhood of λ = 0 are given as the
roots of the cubic polynomial

(3.3) det (Ba,b,ξ − λIa,b,ξ) = 0.

This method of determining asymptotic expansions of the critical eigenvalues bifurcat-
ing from the (λ, ξ) = (0, 0) is well established and is applicable outside the small am-
plitude regime considered here; see [8, 11], for example. This is accomplished in three
steps. First, since the operator Ma,b,ξ has constant coefficients when a = 0, the
matricies B0,b,ξ and I0,b,ξ can be explicitly computed using Fourier analysis. Second,
setting ξ = 0 we study the (co-periodic) eigenvalues of Ma,b,0. In particular, by differ-
entiating the underlying wave profile we construct a basis for the generalized kernel of
the operatorMa,b,0 from which we can compute the matrices Ba,b,0 and Ia,b,0 directly.
Finally, we analyze the interactions between |a| � 1 (nearly constant solutions) and
|ξ| � (nearly co-periodic perturbations). This final step requires us to expand the
Bloch operator Ma,b,ξ in the Bloch-frequency ξ; this is the content of Lemma 3.3

5Here and throughout, we are using 〈f, g〉 = ∫ 2π
0 f(z)g(z)dz.
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below. With this information, we find that (3.3) is a homogeneous cubic polynomial
in the variables λ and ξ. Analyzing the discriminant of this cubic polynomial then
yields an explicit relationship that must hold between the parameters p and α for the
underlying wave to be spectrally stable in a small neighborhood of the origin.

First, at a = 0 the operator M0,b,ξ has constant coefficients, and a basis for the
critical spectral subspace in this case is spanned by the functions 1 and e±iz associated
with the eigenvalues iω̃0,ξ,b and iω̃±1,ξ,b, respectively, where the ω̃j,ξ,b are defined in
terms of the ωj,ξ via

ω̃j,ξ,b := n|k0,b|α (|j|α − 1) =
|k0,b|α

p
ωj,ξ.

Working instead with the real basis

η0(z; 0, 0, ξ) = cos(z), η1(z; 0, 0, ξ) = sin(z), η2(z; 0, 0, ξ) = 1

a direct calculation yields

B0,b,ξ =

⎛⎜⎝
i
2 (ω̃1,ξ,b + ω̃−1,ξ,b)

1
2 (ω̃1,ξ,b − ω̃−1,ξ,b) 0

− 1
2 (ω̃1,ξ,b − ω̃−1,ξ,b)

i
2 (ω̃1,ξ,b + ω̃−1,ξ,b) 0

0 0 iω̃0,ξ,b

⎞⎟⎠ ,

valid for any ξ ∈ [0, 1/2]. Similarly, by the same reasoning we find

I0,b,ξ =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠
for all b and ξ sufficiently small.

Next, at ξ = 0 we claim that λ = 0 is an eigenvalue of Ma,b,0 with algebraic
multiplicity three and geometric multiplicity two. Indeed, notice that since (1.1) is
invariant with respect to spatial translations it follows that

Ma,b,0∂zPa,b(z) = 0

so that λ = 0 is indeed an eigenvalue of Ma,b,0. Furthermore, differentiating the
profile equation (2.4) with respect to the parameters a and b yields

Ma,b,0∂aPa,b(z) = −∂a (|ka,b|α) Λα∂zPa,b,

Ma,b,0∂bPa,b(z) = −∂b (|ka,b|α) Λα∂zPa,b

so that, in particular, we find

Ma,b,0 (∂b (|ka,b|α) ∂aPa,b(z)− ∂a (|ka,b|α) ∂bPa,b(z)) = 0,

giving a second function in the kernel of Ma,b,0. Finally, by a straightforward com-
putation, using (2.4) and the fact that La,b,0∂zPa,b = 0, we find

Ma,b,0Pa,b(z) = −p (|ka,b|αΛα + 1) ∂zPa,b

so that

Ma,b,0 (∂b (|ka,b|α)Pa,b − p|ka,b|α∂bPa,b) = −p∂b (|ka,b|α) ∂zPa,b,
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giving a 2π-periodic function in the generalized kernel of Ma,b,0 ascending above
the translation mode ∂zPa,b. In particular, this shows that for all values of a and
b sufficiently small, the three eigenvalues iω0,ξ and iω±1,ξ all vanish when ξ = 0,
and that the eigenvalue λ = 0 indeed corresponds to an algebraically triple and
geometrically double eigenvalue of the operator Ma,b,0 acting on L2(R/2πZ).

Using the expansions in Lemma 2.1 we now obtain a basis for the critical eigenspace
which is compatible with the basis found at a = b = 0. In particular, we take

η0(z; a, b, 0) =
1

p+ 1
(∂b (|ka,b|α) ∂aPa,b(z)− ∂a (|ka,b|α) ∂bPa,b(z))

= cos(z)− 2 + 2α(p− 1)

4(2α − 1)
a+

p+ 1

6
cos(2z)a− 2

p
cos(z)b+O(a2 + b2),

η1(z; a, b, 0) = −1

a
∂zPa,b = sin(z) +

p+ 1

2(2α − 1)
sin(2z)a+O(a2 + b2)

η2(z; a, b, 0) = ∂b (|ka,b|α)Pa,b − p|ka,b|α∂bPa,b

= 1 + (p+ 1) cos(z)a− p+ 1

p
b+O(a2 + b2).

In this basis, a straightforward calculation yields

Ia,b,0 =

⎛⎜⎝ 1 0 2α(p+3)−2(p+2)
2(2α−1) a

0 1 0
2α(p+3)−2(p+2)

4(2α−1) a 0 1

⎞⎟⎠+O(a2 + b2)

and

Ba,b,0 =

⎛⎝ 0 0 0
0 0 σa,b

0 0 0

⎞⎠ ,

where

σa,b =
〈η1(z; a, b, 0),Ma,b,0η2(z; a, b, 0)〉

〈η1(z; a, b, 0), η1(z; a, b, 0)〉 = pa∂b (|ka,b|α)

= p(p+ 1)a− 2(p+ 1)ab+O(|a|(a2 + b2)).

Continuing, we note that the basis {ηj(z; a, b, 0)}j=0,1,2 defined above can be ex-
tended to a basis of the three-dimensional eigenspace bifurcating from the generalized
kernel of Ma,b,0 for sufficiently small a, b, and ξ. This provides us with an expansion
of the form

(3.4) Ba,b,ξ = B0,b,ξ + Ba,b,0 + aξB1 +O
(
|ξ|(a2 + b2) + |ξ|min(2,α+1)(a+ b)

)
.

In order to determine the three eigenvalues of Ba,b,ξ, we consider the characteristic
polynomial

D(λ; a, b, ξ) = det (Ba,b,ξ − λIa,b,ξ) = c3λ
3 + c2λ

2 + c1λ+ c0,

where the coefficient functions cj = cj(a, b, ξ), defined for |(a, b, ξ)| � 1, depend
smoothly on the parameters a, b and are C1 in ξ. Analyzing the dependence of the cj
on a, b, and ξ more carefully, notice that since the spectrum of Ma,b,ξ is symmetric
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with respect to the imaginary axis, considering the coefficients of D as symmetric
functions of its roots, we see that the c2 and c0 must be purely imaginary, whereas c1
and c3 must be real. Furthermore, since

σ (Ma,b,ξ) = σ (M−a,b,ξ) , σ (Ma,b,ξ) = σ (Ma,b,−ξ),

it follows that the coefficients cj must all be even in a and that c2 and c0 are odd6 in
ξ, while c1 and c3 are even in ξ. Also, notice that c3(a, b, ξ) = − det (Ia,b,ξ) is nonzero
for all |(a, b, ξ)| � 1. Together with the expansion of Ba,b,ξ above, these properties
imply that the polynomial D is a cubic polynomial in the complex variables λ and ξ.
It follows that the roots λ = λ(a, b, ξ) of D can be written as λ = ipξX , where the
complex numbers X are determined as the roots of the cubic polynomial

Q(X ; a, b, ξ) = det

(
1

ipξ
Ba,b,ξ −XIa,b,ξ

)
= d3X

3 + d2X
2 + d1X + d0,

where the coefficients dj are real-valued and even in a and ξ. To determine whether
the roots of Q, and hence the three critical eigenvalues, lie on the imaginary axis or
not we consider the discriminant

Δa,b,ξ = 18d3d2d1d0 + d22d
2
1 − 4d32d0 − 4d3d

3
1 − 27d23d

2
0,

which here, by the symmetry properties of the coefficients dj , can be expanded near
for |(a, b, ξ)| � 1 as

(3.5) Δa,b,ξ = Δ0,b,ξ + γa2 +O (
(a2

(
a2 + |b|+ ξδ

))
for some appropriate δ > 0, chosen independently of ξ, and some constant γ ∈ R

still to be determined. In particular, the polynomial Q will have three real roots,
corresponding to stability, when Δa,b,ξ > 0, while it will have one real and two
complex-conjugate roots, corresponding to instability, when Δa,b,ξ < 0.

Now, using the above formulas for the matrices B0,b,ξ and I0,b,ξ we can compute
the quantity Δ0,b,ξ explicitly as

Δ0,b,ξ =
|k0,b|6α
p6ξ6

(A1(ξ;α)A1(−ξ;α)A2(ξ;α))
2 ,

where, for |ξ| � 1, we have the expansions

A1(ξ;α) = −1 + (1 + ξ)α+1 − ξ|ξ|α = (α+ 1)ξ +O(|ξ|1+ε),

A2(ξ;α) = −2 + (1− ξ)α+1 + (1 + ξ)α+1 = α(α + 1)ξ2 +O(|ξ|2+ε)

for some appropriate ε > 0 chosen independently of ξ. Thus, for |ξ| � 1 we have

Δ0,b,ξ =
|k0,b|6αα2(α+ 1)6ξ2

p6
+O(|ξ|2+ε),

which is clearly positive for ξ sufficiently small. It follows that the sign of the discrim-
inant Δa,b,ξ in the asymptotic regime |(a, b, ξ)| � 1 is determined completely by the
sign of the constant γ in (3.5). To determine γ, in turn, it sufficies to compute Δa,0,0

6In fact, since λ = 0 is an eigenvalue of Ma,b,0 of algebraic multiplicity at least three it follows
that c3 = O(|ξ|3).
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to order O(a2) which, by a direct calculation, is possible by computing the matrix
ξ−1Ba,0,ξ to order one in the parameter a, i.e., it is sufficient to determine the matrix
B1 in (3.4). To this end we must expand the Bloch operator Ma,b,ξ in the Bloch
frequency ξ for |ξ| � 1, which is addressed in the following lemma.

Lemma 3.3. Let α > 0 and f ∈ Hα+1(R/2πZ) be fixed. Then for all |ξ| � 1, we
have

e−iξx∂xΛ
αeiξxf(x) = ∂xΛ

αf(x) + iξ|ξ|αf̂(0)

+

( ∞∑
l=1

i

(
α+ 1

2l− 1

)
Λα−2(l−1)ξ2l−1

)
Pf(x)

+

( ∞∑
r=1

(
α+ 1

2r

)
∂xΛ

α−2rξ2r

)
Pf(x),

where
(
m
n

)
:= m(m−1)(m−2)...(m−n+1)

n! denotes the generalized Binomial coefficient, de-
fined for m ∈ C and n ∈ N, and P denotes the orthogonal projection of Hα+1(R/2πZ)
onto the subspace of mean-zero functions.

Proof. Using the Fourier series representation of f we find

e−iξx∂xΛ
αeiξxf(x) =

∑
k∈Z

i(k + ξ)|k + ξ|αeikxf̂(k).

Since |ξ| � 1, we have |k + ξ| = |k| + sgn(k)ξ so that, for k �= 0, the term |k + ξ|α
may be expanded using Newton’s binomial series as

|k + ξ|α =

∞∑
m=0

(
α

m

)
|k|α−msgn(k)mξm,

and hence

(k + ξ)|k + ξ|α = |k|αk +

∞∑
m=1

sgn(k)m−1

[(
α

m

)
+

(
α

m− 1

)]
|k|α−(m−1)ξm,

valid for k �= 0. If m = 2l − 1 for some l ∈ N, then

sgn(k)m−1|k|α−(m−1) = |k|α−2(l−1),

while if m = 2r for some r ∈ N, we have

sgn(k)m−1|k|α−(m−1) = k|k|α−2r.

Using Pascal’s rule
(
m
n

)
+
(

m
n−1

)
=
(
m+1
n

)
, valid for all m ∈ C and n ∈ N, we find for

k �= 0

(k + ξ)|k + ξ|α = k|k|α +

∞∑
l=1

(
α+ 1

2l− 1

)
|k|α−2(l−1)ξ2l−1

+
∞∑
r=1

(
α+ 1

2r

)
k|k|α−2rξ2r,

from which the claimed expansion follows.
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Remark 3.1. Notice that for a given α > 0 the smoothness of the operator
e−iξx∂xΛ

αeiξx in ξ near ξ = 0 is determined by the smoothness of the term ξ|ξ|α
near the origin. In particular, for α ∈ 2N one obtains an analytic expansion, while
for positive α /∈ 2N one obtains only a C	α
+1 expansion. It is expected then that
for every α > 0 the spectrum of Ma,b,ξ bifurcating from the (λ, ξ) = (0, 0) will be at
least C1 in a neighborhood of ξ = 0.

From Lemma 3.1, we can expand for |(a, b, ξ)| � 1 the operator Ma,b,ξ to any
desired order in ξ. For our purposes, it is sufficient to identify the term of first order
in ξ, which is

(3.6)
∂

∂ξ
Ma,b,ξ

∣∣∣
ξ=0

= i
(
(α+ 1)kαa,bΛ

α + 1− (p+ 1)P p
a,b

)
.

Using (3.6), we find that the matrix B1 in (3.4) is given explicitly by7

B1 = i

⎛⎜⎝ 0 0 (α − 1)p(p+ 1) + p(2+2α(p−1)
2(2α−1)

0 0 0
(α−1)p(p+1)

2 + p(2+2α(p−1)
4(2α−1) 0 0

⎞⎟⎠ ;

see [10] for related calculations. Using Mathematica [31], it follows that

Δa,0,0 =

(
(p+ 1)α(1 + α)4 [2α (4− (p− 1)(α− 1))− 4− 2(α+ p)]

2(2α − 1)

)
a2 +O(a4).

Defining

(3.7) p∗(α) :=
2α(3 + α)− 4− 2α

2 + 2α(α− 1)
,

it follows that for p > max (1, p∗(α)) we have Δa,0,0 < 0 for |a| � 1, corresponding
to instability. In particular, noting that p∗(α) < 1 for α ∈ (1/2, 1), we find instability
for all p ≥ 1 when α ∈ (1/2, 1). On the other hand, for α > 1 and 1 ≤ p < p∗(α),
we find that Δa,0,0 > 0 for |a| � 1 corresponding to stability for sufficiently small a
Together, the above analysis establishes our main result.

Theorem 3.4. Let α > 1
2 and p ≥ 1 be fixed such that either p ∈ N or p = m

n ,
where m and n are even and odd integers, respectively. Then the small amplitude pe-
riodic traveling wave solutions ua,b = Pa,b(ka,b·) of (1.1) constructed in Theorem A.1
for |(a, b)| � 1 are spectrally stable if α > 1 and p < p∗(α) and are spectrally
unstable if α ∈ (1/2, 1) or if α > 1 and p > p∗(α), where here p∗(α) is defined
in (3.7).

Remark 3.2. As mentioned in the introduction, the spectral instability detected
in Theorem 3.4 is of sideband type and is hence not detectable if one restricts to
perturbations with the same period as the underlying wave.

Remark 3.3. For the classical Benjamin–Ono equation, corresponding to α =
p = 1, we find from p∗(1) = 1 that Δa,0,0 = O(a4) for |a| � 1. In this case,
the above analysis is insufficient to determine the stability/instability of the small
periodic traveling wave solutions, and one must hence carry the above calculations
to higher orders. We do not attempt this here but consider this an interesting open
question.

7Notice that explicit forms of the variations ∂ξηj |ξ=0 are not needed at this order in the
calculation.
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As far as the author is aware, Theorem 3.4 is the first rigorous spectral stabil-
ity/instability result in the periodic context for nonlocal KdV like equations of form
(1.1). A plot of p∗(α) for α ≥ 1 is provided in Figure 1.1. Notice that when α = 2,
corresponding to the classic gKdV equation (1.2), Theorem 3.4 recovers the result of
Haragus and Kapitula in [21], yielding spectral stability for 1 ≤ p < 2 and spectral
instability for p > 2. As one begins to decrease α from this classical case, the critical
power p∗(α) decreases nonlinearly, in contrast to the solitary wave case where the
critical power decreases linearly as α is decreased; see [7]. This illustrates an inter-
esting, but not necessarily unexpected, difference between the solitary and periodic
theories. It is also interesting to note that p∗(α) < 2α for all α > 1

2 , indicative
of the fact that periodic traveling waves are generally less stable than their solitary
wave counterparts. This seems intuitively clear since the class of periodic traveling
wave solutions of (1.1) generally has a richer structure than that for solitary waves.
Also, the admissible classes of perturbations for periodic waves is considerably larger:
indeed, in the periodic setting one can consider perturbations with twice the funda-
mental period of the underlying wave, a situation that is not possible in the solitary
wave theory, which more closely resembles a co-periodic (i.e., zero-Bloch frequency)
stability analysis.

What seems striking about Theorem 3.4 is the fact that the function p∗(α) attains
a global maximum of approximately 2.19 on (1/2,∞) at a critical α∗ ≈ 2.7486 and
that for α > α∗ the function p∗(α) monotonically decreases with limiting behavior

lim
α→∞ p∗(α) = 1.

This suggests that for p ∈ (1, p∗(α∗)), there exists a finite range of α such that
the associated model equation (1.1) admits spectrally stable small periodic traveling
waves. Indeed, for p = 1 this indicates that for all α > 1 the small amplitude periodic
traveling wave solutions of (1.1), as constructed in Theorem A.1, are spectrally stable
to localized perturbations on the line. For p = 2, on the other hand, we see that
(1.1) admits spectrally stable small periodic traveling wave solutions provided α ∈
(2, 4), and that for α /∈ [2, 4] no such spectrally stable waves exist. Furthermore,
for p > p∗(α∗), the model equation (1.1) does not admit spectrally stable small
amplitude periodic traveling waves for any α > 1/2. It is also important to note that
p∗(1) = 1, so that our analysis is unable to determine the spectral stability of the small
amplitude periodic traveling waves constructed in Theorem A.1 in the case α = p = 1,
i.e., our analysis is inconclusive regarding the stability of such waves in the classical
Benjamin–Ono equation. It does, however, indicate that all such small periodic waves
are spectrally unstable in the generalized Benjamin–Ono equation, corresponding to
(1.1) with α = 1 and p > 1.

Finally, recall that the solitary wave solutions of (1.1) are known to be spectrally
(and nonlinearly) stable provided p < 2α [7]. Hence, for any p ≥ 1 it is possible
to find a stable solitary wave solution of (1.1) so long as α is sufficiently large. In
contrast, the analysis presented in this paper not only provides an upper bound p∗(α∗)
on p for which models of the form (1.1) can admit spectrally stable small periodic
traveling waves but also provides for each p ∈ (1, p∗(α∗)) lower and upper bounds on
the dispersion parameter α for such stable waves to exist. It seems possible that this
striking difference between the solitary and periodic wave cases is fundamentally due
to the nature of dispersion on the line versus “dispersion” on the circle (corresponding
to periodic boundary conditions). Indeed, notice that the sideband type instability
detected by our analysis can be seen, via the Bloch transform, as a periodic instability
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in the space L2(R/2πnZ) for some n � 1. At this time, however, we do not attempt
to provide a more detailed or rigorous account for the striking differences between the
periodic and solitary wave cases and instead leave this as an interesting open problem.

Appendix A. Existence of small periodic traveling waves. In this ap-
pendix, we utilize a Lyapunov–Schmidt reduction to establish the existence and basic
regularity properties of small amplitude periodic traveling wave solutions of the non-
local profile equation (2.2). The method of proof parallels that given for Theorem 1
in [22] in the context of the fifth order Kawahara equation.

Theorem A.1. Let α > 1
2 and p ≥ 1 be fixed such that either p ∈ N or else

p = m
n , where m and n are even and odd integers, respectively. Then there exist

constants a0, b0 ∈ R such that for any fixed b ∈ (−b0, b0) the nonlocal profile equation
(2.2) admits a one-parameter family of even, periodic solutions {ua,b}a∈(−a0,a0) of the
form

ua,b(x) = Pa,b(ka,bx),

where Pa,b is 2π-periodic and smooth in its argument. Moreover, the following prop-
erties hold:

(i) The map k : (−a0, a0)× (−b0, b0) → R is analytic, even in a, and satisfies

kαa,b = k∗(b) + k̃(a, b),

where k∗(b) = (p+ 1)Qp
b − 1 and

k̃(a, b) =
∑
n≥1

k̃2n(b)a
2n,

∣∣∣k̃2n(b)∣∣∣ ≤ K0

ρ2n0
,

for any |(a, b)| � 1 and some positive constants K0 and ρ0 > a0.
(ii) The map (−a0, a0) × (−b0, b0) � (a, b) �→ Pa,b ∈ Hα(R/2πZ) is analytic and

can be expanded as

Pa,b(z) = Qb + a cos(z) +
∑

n,m �=0, n+m≥2
n−m �=±1

p̃n,m(b)ei(n−m)zan+m,

where p̃n,m ∈ R are such that p̃n,m(b) = p̃m,n(b) with

|p̃n,m(b)| ≤ C0

ρn+m
0

for any |b| � 1 and some C0 > 0.
(iii) The Fourier coefficients p̂n(a, b) of the 2π-periodic function Pa,b,

Pa,b(z) =
∑
n∈Z

p̂n(a, b)e
inz ,

are real and satisfy p̂0(a, 0) = 1 +O(a2) and p̂n(a, 0) = O(|a|n) for n �= 0 as
a → 0. Moreover, the map a �→ p̂n(a, b) is even (resp., odd) for even (resp.,
odd) values of n.
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Remark A.1. The restriction to α > 1
2 in Theorem A.1 is made to ensure that the

Sobolev space Hα(R/2πZ) is embedded in L∞(R/2πZ), which ensures smoothness of
the map F defined below. Also, the restriction on the form of p is made to ensure
that the mapping R � x → xp ∈ R is well defined, thus ensuring that we don’t have
to restrict our search a priori to positive solutions of (2.2).

Proof. Renormalizing the period to 2π, let k ∈ R+ denote a wave number and set
z = kx so that the rescaled profile equation becomes

(A.1) −kαΛαu− u+ up+1 = b.

We seek 2π-periodic solutions of (A.1). To this end, first notice that since α > 1
2

one can show by arguments identical to that in Appendix B in [17] that any u ∈
Hα(R/2πZ) satisfying (A.1) automatically lies in H2α+1(R/2πZ). Iterating now the
identity

u = [kα(Λα + 1)]
−1 (

up+1 + (kα − 1)u− b
)

implies that u ∈ H∞(R/2πZ), so that any 2π-periodic Hα solution of (A.1) is au-
tomatically a smooth function of z. Thus, it is sufficient to seek solutions of (A.1)
which lie in Hα(R/2πZ).

Set Xα := Hα(R/2πZ) × R+ × R, considered to be equipped with the natural
graph norm, and define the map F : Xα → L2(R/2πZ) by

F (v, k, b) := −kαΛαv − v + vp+1 − b,

noting that F is well defined by Sobolev embedding. Clearly then, the zeros of F
correspond to 2π-periodic solutions of (A.1), which can be taken to be even functions
of z by applying an appropriate spatial translation. First, we claim that F is C1 on
Xα. Indeed, given any (v, k, b) ∈ Xα we find that

∂F

∂v
= −kαΛα − 1 + (p+ 1)vp,

∂F

∂k
= −αkα−1Λα,

and ∂F
∂b = −1. Clearly ∂F

∂k and ∂F
∂b depend continuously on (v, k, b) ∈ Xα, and ∂F

∂v

depends continuously on (k, b) ∈ R+×R. To see that ∂F
∂v depends continuously on v ∈

Hα(R/2πZ), notice that by Sobolev embedding we have for all v1, v2 ∈ Hα(R/2πZ)∥∥∥vp+1
1 − vp+1

2

∥∥∥
L∞(R/2πZ)

≤ C‖v1 − v2‖Hα(R/2πZ)

×
(
‖v1‖pHα(R/2πZ) + ‖v2‖pHα(R/2πZ)

)
for some constant C > 0, from which we find∥∥∥∥∂F∂v (v1, k, b)f − ∂F

∂v
(v2, k, b)f

∥∥∥∥
L2(R/2πZ)

≤ C‖v1 − v2‖Hα(R/2πZ)

×
(
‖v1‖pHα(R/2πZ) + ‖v2‖pHα(R/2πZ)

)
× ‖f‖Hα(R/2πZ)

for all f ∈ Hα(R/2πZ), which establishes the continuity on v, as claimed. Together,
the above arguments verify that F is C1 on Xα.
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Continuing, by inspection we see that F (Qb, k, b) = 0 for |b| � 1 and any k ∈ R+.
Furthermore, for fixed b � 1 and k > 0 we have

∂F

∂v
(Qb, k, b)) = −kαΛα − 1 + (p+ 1)Qp

b ,

which, by Fourier analysis, has a trivial kernel in L2(R/2πZ) provided kα �= k∗(b),
where k∗(b) is given in the statement of the theorem. When kα �= k∗(b) then, the im-
plicit function theorem implies that the root (Qb, k, b) of F (v, k, b) continues uniquely
for |k − k0| � 1 and |b − b0| � 1. By inspection, this must correspond to the
nearby equilibrium solutions Qb. To find nonconstant solutions then, we must con-
sider the case kα = k∗(b), in which case the kernel of the above linear operator is
two-dimensional and is spanned by e±iz. We now construct periodic solutions v to
the equation F (v, k, b) = 0 by using a Lyapunov–Schmidt reduction for |b| � 1 and
|kα − k∗(b)| � 1.

We set kα = k∗(b) + k̃ and

(A.2) v(z) = Qb +
1

2
Aeiz +

1

2
Āe−iz + h(z),

where A ∈ C and h ∈ Hα(R/2πZ) satisfies∫ 2π

0

h(z)e±izdz = 0.

Substituting these expressions into the equation F (v, k, b) = 0 leads to an equation
of the form

(A.3) Lbh = N (h,A, Ā, k̃, b),

where

Lb :=
∂F

∂v
(Qb, k

∗(b), b)

and N (0, 0, 0, k̃, b) = 0 for any k̃, b ∈ R. Again using Fourier analysis, we see
that the kernel of Lb is two-dimensional and is spanned by e±iz. We denote by
P : L2(R/2πZ) → ker(Lb) the spectral projection onto the kernel of Lb, defined for
any u ∈ L2(R/2πZ) by

Pu(z) = û(1)eiz + û(−1)e−iz.

Since Ph = 0 then, the perturbation equation (A.3) is equivalent to the system

(A.4)

{
Lbh = (I− P )N (h,A, Ā, k̃, b),

0 = PN (h,A, Ā, k̃, b),

which is valid for any |b| � 1.
Notice the restriction of Lb to Z := (Id − P )Hα(R/2πZ) has a bounded inverse

given by (
Lb

∣∣−1

Z
)
v =

∑
n�=±1

v̂(n)

k∗(b)α (1− |n|α)
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for any v ∈ Z. In particular, this formula shows that the operators
(
Lb

∣∣
Z
)−1

form a
family of bounded linear operators depending analytically on b. Therefore, the system
(A.4) is equivalent to

(A.5)

{
h = L−1

b (Id− P )N (h,A, Ā, k̃, b),

0 = PN (h,A, Ā, k̃, b).

Using the implicit function theorem [12, Theorem 2.3], we can solve the first equation
in (A.5) to find a unique solution h = H∗(A, Ā, k̃, b) ∈ Z that depends analytically
on (A, Ā, k̃, b) in a neighborhood of (0, 0, 0, b0) in the space diag(C2) × R2, where
diag(C2) := {(z, z̄) : z ∈ C). In particular, notice the uniqueness of this solution
implies that

(A.6) H∗(0, 0, k̃, b) = 0

for all |b| � 1. Furthermore, the invariance of (2.2) with respect to spatial translations
z �→ z + z0 and the reflection z �→ −z implies the relations

(A.7)

{
H∗(A, Ā, k̃, b)(z + z0) = H∗(Aeiz0 , Āe−iz0 , k̃, b)(z),

H∗(A, Ā, k̃, b)(−z) = H∗(Ā, A, k̃, b)(z).

Substituting the above into PN (h,A, Ā, k̃, b) = 0 now yields the equation

PN (H∗(A, Ā, k̃, b)(z), A, Ā, k̃, b) = 0,

which must be solved. Using the explicit form of the projection P , this equation has
solutions provided the two orthogonality conditions

J±(A, Ā, k̃, b) =

∫ 2π

0

Aeiz ± Āe−iz

2
N (H∗(A, Ā, k̃, b)(z), A, Ā, k̃, b)dz = 0

are satisfied. Notice that the relations (A.7) imply that the functions J± satisfy

(A.8)
J+(Ae

iz0 , Āe−iz0 , k̃, b) = J+(A, Ā, k̃, b) = J+(Ā, A, k̃, b),

J−(Aeiz0 , Āe−iz0 , k̃, b) = J−(A, Ā, k̃, b) = −J−(Ā, A, k̃, b).

In particular, taking z0 = −2 arg(A) in the equalities for J− implies that

J−(Ā, A, k̃, b) = J−(A, Ā, k̃, b) = −J−(Ā, A, k̃, b),

from which we see that the condition J−(A, Ā, k̃, b) = 0 is always satisfied.
As for the solvability condition J+ = 0, taking z0 = − arg(A) in (A.8) we find

J+(A, Ā, k̃, b) = J+(|A|, |A|, k̃, b) so that the associated solvability condition becomes
J+(a, a, k̃, b) = 0, where a ∈ R belongs to a sufficiently small neighborhood of the
origin. Noting that (A.6) implies that a−1H∗(a, a, k̃, b) is analytic in a near a = 0, it
follows from the explicit form of the function N that

J+(a, a, k̃, b) =

∫ 2π

0

a cos(z)N (H∗(A, Ā, k̃, b)(z), A, Ā, k̃, b)dz

= a2
(
k̃ + J̃(a, k̃, b)

)
,
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where J̃ is analytic in its argument, even with respect to the parameter a, and satisfies
J̃(0, 0, b) = ∂k̃J̃(0, 0, b) = 0. By the implicit function theorem [12] again, for 0 <

|a| � 1 we obtain a solution k̃(a, b) of J̃(a, k̃, b) = −k̃, and hence of J+(a, a, k̃, b) = 0,
defined for sufficiently small a, b ∈ R. Furthermore, it follows that k̃ is even in a and
analytic in a sufficiently small neighborhood of the origin in R2, so that the function

k(a, b) =
(
k∗(b) + k̃(a, b)

)1/α
satisfies the properties discussed in (i).

From the above considerations, it follows that the system (A.5) has a unique
solution

(h, k̃) =
(
H∗(A, Ā, k̃(|A|, b), b), k̃(|A|, b)

)
,

defined for any sufficiently small A ∈ C and |b| � 1. Substituting h =
H∗(A, Ā, k̃(|A|, b), b) into (A.2) thus yields a 2π-periodic solution of (2.2). The peri-
odic solutions Pa,b described in the theorem are now found by restricting to A ∈ R,
so that

Pa,b(z) = Qb + a cos(z) + va,b(z), va,b(z) = H∗(a, a, k̃(a, b), b)(z).

The properties of Pa,b described in (ii) are now easily deduced from analyticity and the

symmetries of the function H∗(A, Ā, k̃(|A|, b), b), while (iii) follows directly from the
expansion of Pa,b given in (ii).

Appendix B. Proof of Proposition 3.1. In this appendix, we establish a non-
local type of Floquet–Bloch theory that is suitable for the stability analysis presented
in this paper.

Proof of Proposition 3.1. Clearly (iii) holds for some ξ ∈ [−1/2, 1/2) if and
only if the kernel of the operator Ma,b,ξ − λI acting on L2(R/2πZ) is nontrivial.
Furthermore, the operator Ma,b,ξ acting on L2(R/2πZ) has a densely defined and
compactly embedded domain Hα+1(R/2πZ) and hence has a compact resolvent. As
a result, the spectrum of Ma,b,ξ consists of isolated eigenvalues of finite multiplicity
and, in particular, we see that λ ∈ σ (Ma,b,ξ) if and only if the operator Ma,b,ξ − λI
has a nontrivial kernel. This establishes that (ii) ⇐⇒ (iii).

Now, assume that (ii) does not hold, i.e., that the operator Ma,b,ξ −λI is bound-
edly invertible on L2(R/2πZ) for all [−1/2, 1/2). Then there exists a constant C > 0
such that

‖(Ma,b,ξ − λI) v‖L2(R/2πZ) ≥ C‖v‖L2(R/2πZ)

for all v ∈ Hα+1(R/2πZ) and ξ ∈ [−1/2, 1/2). Using (3.1) then, we find for all
w ∈ Hα+1(R) that

‖(Ma,b − λI)w‖2L2(R) = 2π

∫ 1/2

−1/2

‖(Ma,b,ξ − λI) w̌(ξ, ·)‖2L2(R/2πZ) dξ

≥ 2πC2

∫ 1/2

−1/2

‖w̌(ξ, ·)‖2L2(R/2πZ) dξ

= C2‖w‖L2(R).

It follows then that Ma,b−λI is boundedly invertible as an operator acting on L2(R).
This establishes that (i)⇒(ii).
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Finally, assume that (ii) holds, i.e., that for some ξ0 ∈ [−1/2, 1/2) the operator
Ma,b,ξ0 − λI is not boundedly invertible on L2(R/2πZ). Then by the above consid-
erations there exists a v ∈ Hα+1(R/2πZ) such that (Ma,b,ξ0 − λI) v = 0. For each
0 < ε < 1, let φε : R → R be defined by

φε(ξ) =

{
ε−1/2 if |ξ| < ε/2,
0 if |ξ| ≥ ε/2,

and note that ‖φε‖L2(R) = 1. Given a fixed ε ∈ (0, 1) then, notice that the function

R
2 � (ξ, z) �→ v(z)φε(ξ − ξ0) ∈ C

belongs to L2([−1/2, 1/2);L2(R/2πZ)) and can hence be viewed as the Bloch-
transform of some function vε ∈ L2(R) with

‖vε‖2L2(R) =

∫ 1/2

−1/2

φε(ξ − ξ0)
2‖v‖2L2(R/2πZ)dξ = ‖v‖2L2(R/2πZ)

for all ε > 0 sufficiently small. Then for each 0 < ε � 1, we find using (3.1) that

‖(Ma,b − λI) vε‖2L2(R) =

∫ 1/2

−1/2

φε(ξ − ξ0)
2 ‖(Ma,b,ξ − λI) v(·)‖2L2(R/2πZ) dξ

=
1

ε

∫
|ξ−ξ0|<ε/2

‖(Ma,b,ξ − λI) v(·)‖2L2(R/2πZ) dξ.

Next, we want to show the above quantity tends to zero as ε → 0+.
To this end, notice that Lemma 3.3 in section 3.3 implies that the mapping

ξ → Ma,b,ξ is continuous in the operator norm from Hα+1(R/2πZ) to L2(R/2πZ).
Indeed, for a given w ∈ Hα+1(R/2πZ) and ξ1, ξ2 ∈ [−1/2, 1/2) we have the estimate

‖(Ma,b,ξ1 −Ma,b,ξ2)w‖L2(R/2πZ) � |ξ1 − ξ2|‖w‖Hα+1(R/2πZ),

yielding the desired continuity. It now follows that

lim
ε→0+

1

ε

∫
|ξ−ξ0|<ε/2

‖(Ma,b,ξ − λI) v(·)‖2L2(R/2πZ) dξ

= ‖(Ma,b,ξ0 − λI) v‖2L2(R/2πZ) = 0,

so that, in particular, given any n � 1 there exists an εn > 0 such that

‖(Ma,b − λI) vεn‖2L2(R) <
1

n
.

Recalling that ‖vε‖L2(R) = ‖v‖L2(R/2πZ) for all 0 < ε � 1, it follows that the operator
Ma,b−λI is not boundedly invertible. This establishes (ii)⇒(i), which completes the
proof.
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