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Abstract

We consider the stability of periodic traveling wave solutions to a generalized Korteweg-
deVries (KdV) equation, and prove an index theorem relating the number of unstable
and potentially unstable eigenvalues to geometric information on the classical mechanics
of the traveling wave ordinary differential equation. We illustrate this result with sev-
eral examples including the integrable KdV and modified KdV equations, the L2 critical
KdV-4 equation that arises in the study of blowup, and the KdV- 1

2 equation, which is
an idealized model for plasmas.

1 Introduction

There has been a large amount of work aimed at understanding the stability of nonlinear dispersive
equations that support solitary wave solutions [3, 6, 7, 20, 22, 33, 32, 34, 41, 43]. Much of this
work relies on understanding detailed properties of the spectrum of the operator obtained by
linearizing the flow around the solitary wave. These spectral properties, in turn, have important
implications for the long-time behavior of solutions to the corresponding partial differential equation
[5, 10, 13, 14, 17, 18, 27, 29, 30, 31, 37, 38, 39]- see the review paper of Soffer[40] for more details.

In this paper we consider periodic solutions to equations of Korteweg-de Vries type:

ut + uxxx + (f(u))x = 0 (1)

where f is assumed to be C2. While the stability theory for periodic waves has received much recent
attention [1, 2, 8, 9, 12, 15, 16, 24] the theory is much less developed than the analogous theory for
solitary wave stability, and appears to be mathematically richer.

The main result of this paper is an index theorem giving an exact count of the number of unstable
and potentially unstable eigenvalues of the linearized operator in terms of the number of zeros of
the derivative of the traveling wave profile together with geometric information about a certain
map between the constants of integration of the ordinary differential equation and the conserved
quantities of the partial differential equation. This map encodes information about the kernel and
generalized kernel of the linearized operator as well as some related self-adjoint operators, allowing
us to establish the main result. This map is also closely connected with the classical mechanics of
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the underlying traveling wave ordinary differential equation, providing a link between PDE stability
and ODE dynamics.

This index can be regarded as a generalization of both the Sturm oscillation theorem and the
classical stability theory for solitary wave solutions for equations of Korteweg-de Vries type. In
the case of a polynomial nonlinearity this index, together with a related one introduced earlier by
Bronski and Johnson, can be expressed in terms of derivatives of period integrals on a Riemann
surface. Since these period integrals satisfy a Picard-Fuchs equation these derivatives can be ex-
pressed in terms of the integrals themselves, leading to an expression in terms of various moments
of the solution. We conclude with some illustrative examples.

Note: We will frequently consider the case where f(u) is a power. We use the standard notation
that KdV-p is

ut + uxxx ± (up+1)x = 0. (2)

For p odd the plus and minus signs are equivalent via u 7→ −u. For p even the two signs are not
equivalent. In the examples we will usually consider the focusing case (plus sign) since it tends to
be the more interesting case, although the theory applies equally to either case.

2 Basic Results

We begin by writing down the periodic traveling waves to the gKdV equation and introducing some
important notation. Assuming a traveling wave of the form u(x, t) = u(x− ct) one is immediately
led to the following nonlinear oscillator equation

u2
x

2
= E − V (u; a, c), V (u; a, c) := −au− cu

2

2
+ F (u), (3)

where F is the antiderivative of the nonlinearity f . As any traveling wave profile must satisfy (3),
we refer to this as the traveling wave ODE corresponding to the gKdV equation (1). It follows
the traveling wave profile u satisfies a Hamiltonian ODE with effective potential energy V (u; a, c).
Thus the periodic waves depend on three parameters E, a, and c together with a fourth constant
of integration x0 corresponding to spatial translations which can be quotiented out. Thus when we
speak of a three parameter family of solutions we will be referring to a, E, c.

In many of the interesting cases the nonlinearity f(u) is polynomial. In this case the zero set
of the discriminant of the effective potential energy

Γ = {(E, a, c)|disc(E + au+ c
u2

2
− F (u)) = 0}

gives a variety dividing the parameter space into open sets having a constant number of periodic
solutions. The variety itself represents parameter values where the equation admits some combina-
tion of solitary wave solutions, constant solutions and periodic solutions. In particular, the origin
(a,E) = (0, 0) represents the solitary wave homoclinic to zero - the main case studied in the solitary
wave papers cited above. In all of the examples worked out in this paper the wavespeed c can be
scaled to −1, 0, 1, so the parameter space can be taken to be R2.

In order to ensure the existence of periodic orbits of (3) we assume that we are off of the
discriminant Γ so that there exist simple roots of the equation E = V (u; a, c), and that there are
real roots u± satisfying u− < u+, and that V (u; a, c) < E for u ∈ (u−, u+) (see Figure 1). As
a consequence, the roots u± are smooth functions of the traveling wave parameters (a,E, c). We
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Figure 1: A pictorial representation of the effective potential energy V (u; a, c) along with
total energy E.

also break the translation invariance by assuming that u(0) = u−. It follows that the period of the
corresponding periodic solution of (3) can be expressed by the formula

T (a,E, c) =
√

2
∫ u+

u−

du√
E − V (u; a, c)

=
√

2
2

∮
γ

du√
E − V (u; a, c)

, (4)

where integration over γ represents a integration over an appropriate cycle in the complex plane.
In general, the gKdV equation (1) admits three conserved quantities which physically can be

interpreted as a Hamiltonian energy, mass, and momentum. Given a T -periodic periodic traveling
wave solution of (1), these quantities are defined by

H(a,E, c) =
∫ T

0

(
u2
x

2
− F (u)

)
dx =

√
2

2

∮
γ

E − V (u; a, c)− F (u)√
E − V (u; a, c)

du

M(a,E, c) =
∫ T

0
u(x) dx =

√
2

2

∮
γ

u du√
E − V (u; a, c)

(5)

P (a,E, c) =
∫ T

0
|u(x)|2 dx =

√
2

2

∮
γ

u2 du√
E − V (u; a, c)

(6)

respectively, where the integral over γ is defined as in (4). As above, it follows that each of these
integrals can be regularized at their square root branch points and hence represent C1 functions
of the traveling wave parameters. As we will see, these quantities and their gradients will play a
major role in our stability analysis.

In order to help with computations involving the gradients of the above conserved quantities, we
also note the following useful identity. The classical action (in the sense of action-angle variables)
for the traveling wave ordinary differential equation (3) is

K =
∮
p dq =

√
2
∮ √

E − V (u; a, c) du.

The classical action provides a generating function for the conserved quantities of the KdV equation
evaluated on the traveling waves: specifically the classical action satisfies the relationships

T =
∂K

∂E
, M =

∂K

∂a
, P = 2

∂K

∂c
.

as well as
K = H + aM +

c

2
P + ET.
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These relationships together imply the identity

E∇T + a∇M +
c

2
∇P +∇H = 0 (7)

where ∇ =
(
∂
∂E ,

∂
∂a ,

∂
∂c

)
. It follows that so long as E 6= 0, gradients in the period can be expressed

simply in terms of the gradients of the conserved quantities M , P , and H. Thus, while results in
this paper will be stated in terms of the quantities T , M , and P , as these arise most naturally in
our analysis, it is (generically) possible to re-express them completely in terms of the conserved
quantities of the gKdV flow. Such an interpretation seems more natural from a physical point of
view.

It is worth noting that the constants a and c admit a variational interpretation: using the above
definitions we see the gKdV equation (1) can be written in a standard Hamiltonian form as

ut =
∂

∂x

δH(u)
δu

.

In this formulation, the traveling waves of a fixed period are realized as critical points of the
augmented Hamiltonian functional H + aM + cP/2, i.e.

δ

δu
(H + aM + cP/2) = 0,

and thus represent critical points (in an appropriate space) of the Hamiltonian under the constraint
of fixed mass and momentum, with the parameters a and c representing Lagrange multipliers
enforcing the constraints of fixed mass and momentum. Variational techniques have been used
extensively by many authors and form the backbone of much of the nonlinear stability analysis for
solitary waves of nonlinear dispersive equations: in general, one finds conditions which guarantees
the traveling wave profile is a constrained minimizer of the Hamiltonian.

In this paper, we are interested in both the spectral and orbital1 (nonlinear) stability of spa-
tially periodic traveling wave solutions of (1). The spectral stability problems has been recently
considered [8, 11, 24] in which the authors considered stability to localized perturbations. In this
case, given a T periodic solution u of (1) the corresponding linearized eigenvalue problem takes the
form

∂xLv = µv, (8)

where L = −∂2
x−f ′(u)+ c is a differential operator with periodic coefficients considered on the real

Hilbert space L2(R), the skew-symmetric operator ∂x gives the Hamiltonian structure and µ is the
eigenvalue parameter. This is the standard form for the stability problem for solutions to equations
with a Hamiltonian structure, although it must be emphasized that in the KdV case ∂x has a
non-trivial kernel (spanned by 1) which complicates matters somewhat. In order to consider the
nonlinear stability of such solutions, however, the variational formulation outlined above requires
us to restrict to a particular class of perturbations. Indeed, in order to make sense of variational
computations involving integration by parts, we must consider periodic perturbations whose period
is a multiple of that of the underlying wave, i.e. we must consider perturbations in the space
L2

per(Tk) where Tk := R/(kTZ) for some k ∈ N. Thus, all operators considered throughout this
paper will be considered on the Hilbert space of square integrable kT periodic functions for some
k ∈ N. Moreover, as noted in [12], the conservative form of (1) implies all nontrivial temporal

1Due to the translation invariance of the gKdV equation (1), the best we can hope for is for nonlinear stability
up to translation, i.e. orbital stability. See [1, 2, 6, 7, 15, 26] for more details.
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evolution of a given solution occurs in the space of mean zero functions. Following the notation of
Deconinck and Kapitula we denote this space as H1:

H1 = {φ ∈ L2(Tk) | 〈1, φ〉 = 0}

where 〈f, g〉 :=
∫

Tk
f(x)g(x) dx. Note that H1 = ker(∂x)⊥.

In order to characterize the spectrum of the linearized operator ∂xL we will consider several
geometric quantities arising as Jacobians of maps from the parameter space (E, a, c), which we have
chosen to parameterize the family of traveling wave solutions of (1), to the quantities (T,M,P )
described above. For notational simplicity then, we introduce the following Poisson bracket style
notation for two-by-two Jacobian determinants

{F,G}x,y =
∣∣∣∣ Fx Fy
Gx Gy

∣∣∣∣
with the analogous notation for three-by-three Jacobian determinants:

{F,G,H}x,y,z =

∣∣∣∣∣∣
Fx Fy Fz
Gx Gy Gz
Hx Hy Hz

∣∣∣∣∣∣ .
Finally, in order to count the number of unstable and “potentially” unstable eigenvalues of the
linearized operator, we define the following eigenvalue counts.

Definition 1. Given the linearized operator ∂xL acting on L2
per(Tk) we define the Krein signa-

ture for purely imaginary eigenvalues as follows: if the eigenvalue iµ is algebraically simple with
eigenfunction w then the Krein signature of iµ is given by the sign of 〈w,Lw〉. In the case where
the eigenspace S is higher dimensional the number of eigenvalues of negative Krein signature is the
number of negative eigenvalues of L|S .

The Krein signature is an important geometric quantity associated with eigenvalue problems
having a Hamiltonian structure, and is associated with the sense of transversality of the root of
the eigenvalue relation. It is a fundamental result that if two eigenvalues of like Krein signature
collide they will remain on the axis, while if two eigenvalues of opposite Krein signature collide
they will (generically) leave the imaginary axis. See the text of Yakubovich and Starzhinskii [44],
in particular, Ch 3 of Volume I, for more information.

Definition 2. Given the linearized operator ∂xL acting on L2
per(Tk) we define kR+ to be the number

of eigenvalues of ∂xL on the positive real axis, kC to be the number of eigenvalues in the open first
quadrant, and k−I to be the number of purely imaginary eigenvalues in the upper half-plane with
negative Krein signature.

It is worth making a few remarks on these definition. Firstly, notice that in the case in which
the underlying periodic wave is spectrally stable in L2(Tk) the quantities kR and kC vanish. We
will show that there are only a finite number of imaginary eigenvalues of negative Krein signature
- thus most eigenvalues of the problem have positive Krein signature. Thus k−I counts the number
of “potential instabilities”: the number of imaginary eigenvalues which could (under perturbation)
leave the imaginary axis to become instabilities.

Given this background we now state the main result of this paper.
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Theorem 1. Suppose u is a periodic solution traveling wave solution to the generalized KdV equa-
tion (3). Let K be the classical action of this solution considered as a function of the parameters
(a,E, c) defined in (2) and assume that the principal minors of the Hessian matrix of K are non-
zero:

KEE = TE 6= 0∣∣∣∣ KEE KaE

KaE Kaa

∣∣∣∣ = {T,M}Ea 6= 0∣∣∣∣∣∣
KEE KaE KcE

KaE Kaa Kac

KcE Kac Kcc

∣∣∣∣∣∣ = {T,M,P}Eac 6= 0

Moreover, let k ∈ N be fixed, let p(∂2K) denote the number of positive eigenvalues of ∂2K, the
Hessian matrix of K with respect to (E, a, c), and let kR, kC, k

−
I denote the number of real eigen-

values, complex eigenvalues, and imaginary eigenvalues of negative Krein signature of the operator
∂xL acting on L2(Tk) Then the following equality holds:

kR + 2k−I + 2kC = 2k − p(∂2K). (9)

Remark 1. The vanishing of the right-hand side of the above equation is a sufficient condition for
orbital stability, but this case obviously only occur for k = 1, corresponding to perturbations of the
same period.

Remark 2. Evaluating the above result modulo 2 gives the following formula:

kR+ ≡ 0 mod 2 det(∂2K) < 0

kR+ ≡ 1 mod 2 det(∂2K) > 0

This shows that positivity of the Hessian determinant is a sufficient condition for instability. It is
this modulo two count that underlies the stability theory of the gKdV solitary wave: one consequence
of a well-known result of Weinstein[42] is that in the solitary wave case one has

kR+ ≡ 0 mod 2.
∂P

∂c
> 0

kR+ ≡ 1 mod 2.
∂P

∂c
< 0

which can be recovered from the above by taking the long period limit. In the solitary wave case the
creation of a pair of real eigenvalues (one positive, one negative) is essentially the only way in which
instability can occur: the spectrum either consists of essential spectrum along the imaginary axis,
or it consists of essential spectrum along the imaginary axis together with a pair of real eigenvalues
placed symmetrically on the positive and negative real axes. In the solitary wave case positivity of
∂P
∂c was shown (in the aforementioned paper of Weinstein) to be a necessary and sufficient condition
for stability. In the periodic problem, on the other hand, one can have bands of essential spectrum
off of the imaginary axis with no real eigenvalues.

Remark 3. In general the stability theory to periodic perturbations (k = 1) is closely analogous
to the solitary wave stability theory, while for k ≥ 2 new phenomena occur. Note that in the case
k = 1 the count on the right can equal zero, implying (spectral) stability, while this cannot occur for
k ≥ 2. The above count does not distinguish between complex eigenvalues (which lead to instability)
and imaginary eigenvalues of negative Krein signature (which do not). Later we will introduce a
second index which does distiguish between these cases, at least in a neighborhood of the origin.
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Remark 4. Finally we note that the above result shows that the Hessian of the classical action

K =
√

2
2

∮ √
E − V (u;E, a, c) du

cannot be positive definite. We are unaware of any independent way to prove this but it is supported
by numerical experiments.

In the case where the nonlinearity F is polynomial the integrals (4), (5), and (6) are Abelian
integrals on a Riemann surface and the above expressions can be greatly simplified. For instance
for the case of the Korteweg-de Vries equation the quantities TE , {T,M}a,E , {T,M,P}a,E,c are
homogeneous polynomials of degrees one, two and three respectively in T,M , while for the modified
Korteweg-de Vries equation they are homogeneous polynomials in T and P . In general for a
polynomial nonlinearity they are homogeneous polynomials of degree one, two and three in some
finite number of moments of the solution

µk :=
∮

uk du√
E − V (u; a, c)

=
∫ T

0
uk(x) dx.

Thus, in the polynomial nonlinearity case Theorem 1 yields sufficient information for the stability
of a periodic traveling wave solution in terms of a finite number of moments of the solution itself.

3 Proof of Main Results

The study of eigenvalues of operators of the form (8) has a long history (see [24] and the references
therein for the most recent exposition). The basic observation is that, if L were positive definite the
spectrum of ∂xL would necessarily be purely imaginary, since this operator is skew-adjoint under
the modified inner product 〈〈u, v〉〉 = 〈L1/2u,L1/2v〉. However, in the case of nonlinear dispersive
waves L is never positive definite due to the presence of symmetries; consequently, it may be the
case that there is spectra with nonzero real part. It turns out to be the case that one can count the
number of possible eigenvalues off of the imaginary axis in terms of the dimensions of the kernel
and the negative definite subspace of L.

In the case of periodic solutions to the Korteweg-de Vries equation the best results of this type
that we are aware of are due to Hǎrǎguş and Kapitula [24] and Deconinck and Kapitula [12]. In
particular, Kapitula and Deconinck give the following construction: consider the spectral problem
(8) acting on the real Hilbert space L2(Tk), and let kR, kC, and k−I be defined as before. Let
P : L2(Tk) 7→ H1 represent the orthogonal projection, and define the operator L|H1 : L2(Tk) 7→ H1

by L|H1
:= PLP . Then one has the count

k−I + kR + kC = n(L)− n(〈1,L−1(1)〉)︸ ︷︷ ︸
n(L|H1)

−n(D). (10)

where n(·) denotes the dimension of the negative definite subspace of the appropriate operator
acting on L2(Tk), and D is a symmetric matrix whose entries are given by

Di,j = 〈yi,L|H1yj〉

where {yi} is a basis for the generalized eigenspace of ∂xL
∣∣
H1

in H1 such that

∂xL|H1 span{yi} = ker(L).
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The importance of this formula is the following: By using the results of [22], it is known that a
sufficient condition for the orbital stability of a periodic traveling wave solution of (1) is given by
n(L|H1) = n(D). However, in general very difficult to compute the quantity n(L|H1). For example,
in [12] it was necessary to either have complete knowledge of the eigenvalues and corresponding
eigenfunctions of the operator L on L2(Tk), or one could only look at the case of waves with small
amplitude. While the complete knowledge of the spectra is certainly possible in special integrable
cases, such a computational technique seems impractical in general. However, through the equality
in (10) we see that if one is able to prove that

kR + 2k−I + 2kC = 0,

one can immediately conclude orbital stability in L2(Tk). It follows that spectral stability can
be upgraded to the orbital stability if there are no purely imaginary eigenvalues of negative Krein
signature. However, also notice that Theorem 1 can only provide a positive nonlinear stability result
in the case of k = 1, i.e. stability to co-periodic perturbations (as considered in [26]). Moreover,
as noted in the introduction the count clearly gives information concerning the spectral stability of
the underlying periodic wave. In particular, a necessary condition for the spectral stability of such
a solution in L2(Tk) is for the difference n(L|H1)−n(D) to be even. The main goal of this paper is
to provide an alternative description of the quantity in the left hand side of (10) which is possibly
more computable.

In another paper, Bronski and Johnson [11] considered the analogous spectral stability problem
to both co-periodic and localized perturbations from the view point of Whitham Modulation the-
ory. When considering stability to co-periodic perturbations, it was proven using Evans function
techniques that one has spectral instability if

{T,M,P}E,a,c =

∣∣∣∣∣∣
KEE KEa KEc

KEa Kaa Kac

KEc Kac Kcc

∣∣∣∣∣∣ > 0

and spectral stability if {T,M,P}E,a,c < 0 and TE = KEE > 0. Thus, it is no surprise that these
quantities arise as key ingredients in Theorem 1. To see that the quantity {T,M}a,E must also play
a roll, see comments below concerning the work on Johnson [26]. Concerning stability to localized
perturbations, Bronski and Johnson gave a normal form calculation for the spectral problem in a
neighborhood of the origin in the spectral plane, which amounts to studying the spectral stability of
a periodic traveling wave solution of (1) to long-wavelength perturbations: so called modulational
instability. It was found that the presence of such an instability could be detected by computing
various Jacobians of maps from the conserved quantities of the gKdV flow to the parameter space
(a,E, c) used to parameterize the periodic traveling waves. By deriving an asymptotic expansion
of the periodic Evans function

D(µ, eiκ) = det
(
M(µ)− eiκI

)
in a neighborhood of (µ, κ) = (0, 0), where M(µ) is the monodromy matrix associated with third
order ODE (8), I is the three-by-three identity matrix, and κ is the Floquet exponent, it was found
that the structure of the spectrum of the operator ∂xL in a neighborhood of the origin is determined
by the modulational instability index

∆MI =
1
2

({T, P}E,c − 2{M,P}E,a)3 − 3
(

3
2
{T,M,P}E,a,c

)2

. (11)
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In particular, it was found that if ∆MI > 0 then the spectrum locally consists of a symmetric
interval on the imaginary axis with multiplicity three (modulational stability), while if ∆MI < 0
the spectrum locally consists of a symmetric interval of the imaginary axis with multiplicity one,
along with two branches which, to leading order, bifurcate from the origin along straight lines
with non-zero slope (modulational instability). Obviously modulational instability implies spectral
instability in L2(Tk) for k ∈ N sufficiently large - instability to long wavelength perturbations.
Thus an understanding of both the index ∆MI as well as the count k−I +kR +kC for a general k ∈ N
yields a substantial amount of information concerning the stability of the underlying T -periodic
wave.

A similar geometric construction was later found useful by Johnson [26] to prove orbitally stable
in L2(T1), i.e. orbitally stable to co-periodic perturbations, provided that TE > 0, {T,M}E,a < 0,
and {T,M,P}E,a,c < 0. In [26] the condition {T,M}E,a < 0 was necessary for the proof of nonlinear
stability: Theorem 1 implies in this case one still has nonlinear stability and removes this condition.

Results of this kind require a detailed understanding of the structure of the kernel and gener-
alized kernels of the linear operators L,L|H1 , ∂xL and L∂x ascting on Tk - see, for example, the
work of Gang and Weinstein[19]. A basic observation is that, because the underlying traveling
wave ordinary differential equation is integrable one can explicitly generate the tangent space by
computing the variations with respect to the integration parameters (E, a, c, x0), and thus generate
the kernels and generalized kernels of the relevant operators. This is the content of the next propo-
sition. Since the operators under consideration are non-self-adjoint and the null-spaces typically
have a non-trivial Jordan structure we will adopt the following notation: Given an operator A
acting on L2(Tk) for some k ∈ N, we define the kth generalized kernel as

g−kerk(A) = ker(Ak+1)/ker(Ak).

Thus g−ker0(A) = ker(A) is the usual kernel and A : g−kerj+1(A)) → g−kerj(A). With this in
mind, we begin by stating a preliminary lemma regarding the Jordan structure of the kernel of the
linearized operators acting on L2 (Tk).

Proposition 1. Given any k ∈ N, one generically has dim(ker(L)) = 1, dim(ker(∂xL)) = 2,
dim(g−ker1(∂xL)) = 1, and g−kerj(∂xL) = ∅ for j ≥ 2. In particular, we have the following
genericity conditions:

• If TE 6= 0 then ker(L) = span{ux}. If TE = 0 then ker(L) = span{ux, uE}.

• If TE and Ta do not simultaneously vanish then

ker(∂xL) = span
{
ux,

∣∣∣∣ uE TE
ua Ta

∣∣∣∣} (12)

ker(L∂x) = span{1, u} (13)

• If TE and Ta simultaneously vanish then

ker(∂xL) = span{ux, ua, uE} (14)

ker(L∂x) = span
{

1, u,
∫ x

0
uE dx

}
. (15)

Since the defining ordinary differential equation is third order the kernel cannot be more
than three dimensional.
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• If {T,M}E,a 6= 0 then
ker(L|H1) = span {ux}

• If {T,M}E,a 6= 0 then

g−ker1(∂xL) = span


∣∣∣∣∣∣
uE TE ME

ua Ta Ma

uc Tc Mc

∣∣∣∣∣∣
 (16)

g−ker1(L∂x) = span


∫ x

0

∣∣∣∣∣∣
uE TE ME

ua Ta Ma

uc Tc Mc

∣∣∣∣∣∣
 (17)

thus the generalized kernel can be chosen such that g−ker1(∂xL) ⊂ H1.

• The generalized kernels are one dimensional unless {T,M}E,a and {T, P}E,a vanish si-
multaneously.

• Assuming {T,M}E,a 6= 0 the subsequent generalized kernels g−kerk(∂xL) and g−kerk(L∂x)
for k ≥ 2 are empty as long as {T,M,P}E,a,c 6= 0

Proof. This follows from the observation that the derivatives of the wave profile u with respect to
the parameters a,E, c satisfy the following equations

Lux = 0, LuE = 0, Lua = −1
(

= −δM
δu

)
, Luc = −u

(
= −δP

δu

)
,

reflecting the fact that the constants (a, c) arise as Lagrange multipliers to enforce the mass and
momentum constraints. In the above equality L denotes the formal operator without consideration
for boundary conditions. In order to find elements of the kernel one must impose periodic boundary
conditions. It is not hard to see that ux is periodic while derivatives with respect to the quantities are
not periodic. Since the period T depends on (E, a, c) “secular” terms (in the sense of multiple scale
perturbation theory) arise; in particular, one sees that the change across a period is proportional
to derivatives of the period:

uE(T )
uxE(T )
uxxE(T )

...

−


uE(0)
uxE(0)
uxxE(0)

...

 = TE


uxE(0)
uxxE(0)
uxxxE(0)

...


with similar expressions for the change in the ua, uc across a period. Thus the quantity

φ1(x; a, c, e) =
∣∣∣∣ uE TE
ua Ta

∣∣∣∣
is periodic and satisfies Lφ1 = TE . Similarly the quantity

φ2(x;E, a, c) =

∣∣∣∣∣∣
uE TE ME

ua Ta Ma

uc Tc Mc

∣∣∣∣∣∣
is by construction periodic and satisfies Lφ2 = {T,M}E,c − {T,M}E,au, and thus ∂xLφ2 =
{T,M}E,aux ∈ ker(∂xL). Note that while φ1 is essentially uniquely determined φ2 is only de-
termined up to an element of the kernel. Here we have chosen to make φ2 have mean zero since
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this is the convention required in the work of Deconinck and Kapitula. More will be said on this
choice later.

The rest of the calculation follows in straightforward way from calculations of this sort. For
instance the existence of a second element of the generalized kernel is equivalent to the solvability
of

∂xL =
∣∣∣∣ uE TE
ua Ta

∣∣∣∣ .
By the Fredholm alternative ran(∂xL) = ker(L∂x)⊥ and thus the above is solvable if only if

〈1,
∣∣∣∣ uE TE
ua Ta

∣∣∣∣〉 = {T,M}a,E = 0, 〈u,
∣∣∣∣ uE TE
ua Ta

∣∣∣∣〉 = {T, P}a,E = 0

The rest of the claims follow similarly. In the case that the genericity conditions do not hold we do
not attempt to compute the Jordan form, but we do remark that the algebraic multiplicity of the
zero eigenvalue must jump from three to at least five, and is necessarily odd.

In essence the above proposition shows that the elements of the kernel of ∂xL are given by
elements of the tangent space to the (two-dimensional) manifold of solutions of fixed period at fixed
wavespeed, while the element of the first generalized kernel is given by a vector in the tangent space
to the (three-dimensional) manifold of solutions of fixed period with no restrictions on wavespeed.
As one might expect all of the geometric information on independence in the above proposition can
be expressed in terms of various Jacobians. The next fact we note is that the signs of certain of
these quantities conveys geometric information about the various operators.

Lemma 1. Let n(L) be the dimension of the negative definite subspace of L as an operator on
L2(Tk) with periodic boundary conditions. Then

n(L) =

{
2k − 1, TE ≥ 0
2k, TE < 0

.

Proof. The basic observation here is that the vanishing of TE signals a change in the dimension
of the kernel ker(L). One always has that ux ∈ ker(L) and ker(L) = span{ux} as long as TE 6= 0,
and when TE vanishes we have ker(L) = span{ux, uE}. Thus TE detects when an eigenvalue of L
crosses from the positive to the negative half-line.

Given this intuition the result follows in a relatively straightforward manner from standard
results in Floquet theory, and it is sufficient to prove it for the case k = 1. From the Sturm
oscillation theorem and the fact that ux has 2 roots in a period it is clear that either n(L) = 1 on
L2(T1) (if zero is an upper band-edge) or n(L) = 2 if zero is a lower band-edge. The spectrum of
the eigenvalue problem Lv = µv is characterized by the Floquet discriminant k(µ). The spectrum
of L (on L2(R)) is characterized as the set of values for which the Floquet discriminant k(µ) is
between −2 and 2 :

spec(L) = {µ|k(µ) ∈ [−2, 2]}
with periodic eigenvalues corresponding to points where k(µ) = +2 and anti-periodic eigenvalues
corresponding to points where k(µ) = −2. The Floquet discriminant thus has positive slope at an
upper band-edge and negative slope at a lower band-edge (and vanishes at a double point), and
thus serves to distinguish the two cases: if the sign of the derivative is positive then there is a single
periodic eigenvalue below zero, and if the sign is positive then there are two periodic eigenvalues
below zero. It can be shown (see [11] or [26]) that the sign of k′(µ) is equal to the sign of TE and
thus the result follows. See Figure 2 for an illustration.
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y=2

y=-2

µ

y=k(µ)

TE>0

TE<0

Figure 2: (color online) The Floquet discriminant k(µ). The thick (red) bands correspond
to spec(L). The sign of TE determines whether the origin is a lower band-edge or an upper
band-edge.

This lemma implies that the vanishing of TE signals an eigenvalue of L passing through the
origin and a change in the dimension of n(L), the number of negative eigenvalues of the the second
variation of the energy. Next, we would like to give a similar interpretation for n(L|H1), the
number of negative eigenvalues of the restriction of the second variation to the subspace of mean
zero functions. To this end, we state a preliminary lemma.

Lemma 1. Suppose H(s) is a C1 family of operators and φ(s) is a C1 family of functions with
H(0)φ(0) = 0 is a simple eigenfunction. Then we have that, in a neighborhood of s = 0

〈φ(s), H(s)φ(s)〉 = λ(s)‖φ(0)‖2 +O(s2)

where λ(s) is the corresponding eigenvalue bifurcating from λ(0) = 0.

Proof. Simply notice that the simplicity of the eigenvalue implies the function λ(s) is analytic in a
neighborhood of s = 0 and satisfies that

λ(s) = s
〈φ(0), H ′(0)φ(0)〉
〈φ(0), φ(0)〉

+O(s2).

Upon noticing that

〈φ(s), H(s)φ(s)〉 = 2s
〈
φ′(0), H(0)φ(0)

〉
+ s

〈
φ(0), H ′(0)φ(0)

〉
+O(s2)

= s
〈
φ(0), H ′(0)φ(0)

〉
+O(s2),

the proof is now complete.

With this elementary result in mind, we now present a result which relates the dimension
n(L|H1), which recall is in general very difficult to compute, to the dimension n(L), which was just
computed above.
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Proposition 1. Assume that TE and {T,M}a,E never vanish simultaneously. Then we have the
equality

n(L|H1) = n(L)− n(TE{T,M}a,E).

Proof. Since we are restricting the operator L to a codimension one subspace, the Courant minimax
principle immediately implies that we have either n(L|H1) = n(L) or n(L|H1) = n(L) − 1. To
determine which case occurs, we begin by finding a necessary and sufficient condition for L|H1 to
have an extra element in the kernel. Then, we perform a local perturbation analysis to determine
the direction in which the corresponding eigenvalue bifurcates from the origin.

To begin, notice that the function ux belongs to H1 and satisfies L|H1ux = 0. Thus, the kernel
of the operator L|H1 is always at least one dimensional. Moreover the function {u, T}a,E satisfies

L{u, T}a,E = −TE
and hence, defining the projection Q : L2(Tk)→ H1 it follows that

QL{u, T}a,E = 0.

Thus, {u, T}a,E corresponds to an element of the kernel of L|H1 = QLQ provided that Q{u, T}a,E =
{u, T}a,E , i.e. if 〈1, {u, T}a,E〉 = {T,M}a,E = 0. It follows that the vanishing of {T,M}a,E signals
a change in the dimension of ker(L|H1). Applying Lemma 1, we see2 near a zero of {T,M}a,E that
there is an eigenvalue of L|H1 which is given by

λ = −
TE{T,M}a,E
‖φ1‖2

+ o({T,M}a,E).

Thus, the desired equality holds in a neighborhood of a point in parameter space where {T,M}a,E =
0. To extend this to all parameter values, we note that the difference n(L) − n(L|H1) gives the
number of negative eigenvalues of L|H1 relative to L. Since this quantity is locally constant in
parameter space, we need only check where these quantities change. Since n(L) changes if and only
if TE changes sign by Lemma 1 and the above relative count does not change, it follows the desired
equality holds so long as there exists a point in parameter space at which the quantity {T,M}a,E
vanishes.

To complete the proof note that the results of Bronski and Johnson [11] imply the following
identity:

kR =

{
0 (mod 2), n({T,M,P}a,E,c) = 0
1 (mod 2), n({T,M,P}a,E,c) = 1.

Since k−I and kC are even they do not change the count modulo two. In the case {T,M}a,E is non-
vanishing the count is determined to within one, and is thus the count is exact if one knows the
parity. Applying the result of Bronski and Johnson thus justifies the desired equality in general.

Remark 5. Using a functional analytic proof it was shown in [12] that

n(L|H1) = n(L)− n(〈L−1(1), 1〉)

(also see equation (10)). Using the above calculation it is clear that

〈L−1(1), 1〉 =
{T,M}E,a

TE
=

∣∣∣∣ KEE KEa

KEa Kaa

∣∣∣∣
KEE

showing the equivalence of the two formulae.
2Notice that while 0 is not actually a simple eigenvalue of L|H1 , the function ux is odd while {u, T}a,E is even.

Thus, the eigenspaces split and one is essentially doing simple perturbation theory.
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Finally, to conclude the proof of Theorem 1, we must calculate n(D). This is the content of the
following lemma.

Lemma 2. Under the assumptions of Theorem 1, one has that D ∈ R with

D = −{T,M}a,E{T,M,P}a,E,c.

Thus, n(D) is either 0 or 1 depending if {T,M}a,E{T,M,P}a,E,c is negative or positive, respec-
tively.

Proof. Under the assumptions of Theorem 1, we know that ker(L) = span{ux} and

∂xL|H1

∣∣∣∣∣∣
uE TE ME

ua Ta Ma

uc Tc Mc

∣∣∣∣∣∣ = −{T,M}a,Eux

from Proposition 1. It follows that the matrix D is a real number in this case, with value equal to

D =

〈∣∣∣∣∣∣
uE TE ME

ua Ta Ma

uc Tc Mc

∣∣∣∣∣∣ ,L
∣∣∣∣∣∣
uE TE ME

ua Ta Ma

uc Tc Mc

∣∣∣∣∣∣
〉

= −{T,M}a,E{T,M,P}a,E,c

as claimed.

Remark 6. The last three results show that geometric quantities associated to the classical me-
chanics of the traveling waves contain information about changes in the nature of the spectrum of
the linearized problem. Specifically:

• Vanishing of TE = KEE signals a jump in the dimension of ker(∂xL) and ker(L) cor-
responding to an eigenvalue of L crossing from the negative to the positive half-line (or
vice-versa).

• Vanishing of {T,M}a,E = −
∣∣∣∣ KEE KEa

KaE Kaa

∣∣∣∣ or, equivalently vanishing of 〈L−1(1), 1〉 sig-

nals a jump in the dimension of ker(∂xL) and ker(L|H1) corresponding to an eigenvalue
of L|H1 crossing from the negative to the positive half-line (or vice-versa).

• Vanishing of {T,M,P}a,E,c signals a change in the length of the Jordan chain of ∂xL.

Remark 7. It should be noted that the quantity D computed in Lemma 2 also arose naturally in [26]
when considering orbital stability of periodic traveling wave solutions of (1) to perturbations with
the same periodic structure, i.e. orbital stability in L2(T1). There, the negativity of D was sufficient
in order to ensure the quadratic form induced by L acting on L2(T1) was positive definite on an
appropriate subspace. As the methods therein are based on classical energy functional calculations,
such a requirement was necessary to classify the periodic traveling wave as a local minimizer of the
Hamiltonian subject to the momentum and mass constraints.

Remark 8. In [12] it was shown that D had the functional formulation

D =

∣∣∣∣ 〈L−1(u), u〉 〈L−1(u), 1〉
〈L−1(u), 1〉 〈L−1(1), 1〉

∣∣∣∣
〈L−1(1), 1〉

.
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Proof 1 (Proof of Main Theorem). The proof of Theorem 1 is essentially complete. If we define
the function

n(x) =

{
1, x < 0
0, x > 0.

for x ∈ R/0 then the results of lemmas 1 and 1 and proposition 1 we have the following count:

k−I + kR + kC = n(L|ran(∂x))− n(D)

= 2k − 1 + n(TE)− n(TE{T,M}a,E) + n({T,M}a,E{T,M,P}a,E,c).

From this the main theorem follows from the fact that KE = T,Ka = M,Kc = P/2, and thus that
TE , {T,M}aE , {T,M,P}E,a,c are (to within a multiplicative constant in the last case) the principle
minors of the Hessian of K. From the Jacobi-Sturm rule, which states that the number of negative
eigenvalues of a symmetric matrix is equal to the number of sign changes in the sequence of principle
minors, we find the main result.

Notice that Theorem 1 gives a sufficient requirement for a spatially periodic traveling wave of
(1) to be orbitally stable in L2(Tk) for any k ∈ N and any sufficiently smooth nonlinearity f . In
the next two sections, we analyze Theorem 1 in the case of a power-nonlinearity by using complex
analytic methods to reduce the expression for the Jacobians involved in (9) in terms of moments of
the underlying wave itself. This has the obvious advantage of being more amenable to numerical
experiments as one no longer has to numerically differentiate, a procedure that always involves a
loss of accuracy. We will also discuss the computation of ∆MI for power-law nonlinearities. In
particular, we will prove a new theorem in the case of the focusing and defocusing MKdV which
relates the modulational stability of a spatially periodic traveling wave to the number of distinct
families of periodic solutions existing for the given parameter values.

4 Polynomial Nonlinearities and the Picard-Fuchs System

In the previous section we derived the formula

kR + 2k−I + 2kC = 2k − p(∂2K)

relating the number of unstable and potentially unstable eigenvalues on L2(Tk) to the Hessian of
the classical action K. In earlier work Bronski and Johnson derived the modulational instability
index

∆MI =
1
2

({T, P}E,c − 2{M,P}E,a)3 − 3
(

3
2
{T,M,P}E,a,c

)2

.

which detects the nature of the spectrum at the origin. If this quantity is positive the spectrum
in a neighborhood of the origin lies on the imaginary axis with multiplicity three, while if this
quantity is negative the spectrum in a neighborhood of the origin consists of three curves through
the origin, one along the imaginary axis and two going off in a complex directions. One major
simplification of this theory occurs when the nonlinearity f(u) is polynomial. In this case the
fundamental quantities (T,M,P ) are given by Abelian integrals of the first, second or third kind
on a Riemann surface. On a Riemann surface of genus g there are g integrals of the first kind, g
integrals of the second kind, and 1 integral of the third kind. Since derivatives of these quantities
with resepect to the coefficients are again Abelian integrals they must necessarily be expressible
as a linear combination of the original 2g + 1 integrals, a fact known as the Picard-Fuchs relation.
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While we cannot give a detailed exposition of this theory here the basics are very straightforward.
Suppose that P (u) = a0 +a1u+ . . . anu

n is a polynomial of degree n. If the polynomial is of degree
2g+ 2 or 2g+ 1 then the quantity uk du/

√
P (u) is an Abelian differential on a Riemann surface of

genus g. If we define the kth moment µk of the solution u(x) as follows:

µk =
∫ T

0
uk(x) dx =

∮
γ

uk du√
P (u)

then one obviously has
dµk
daj

=
dµj
dak

= −1
2

∮
γ

uk+j du

P
3
2 (u)

=: Ik+j

for any loop γ in the correct homotopy class. For our purposes we are interested in branch cuts on
the real axis though none of what will be said in this section assumes this. In the context of the
stability problem one only needs I0 . . . I4, since TE , Ta, . . . Pc can all be expressed in terms of these
five quantities, but the theory requires that one consider all such moments. The main observation
is that the above integrals {Ik} are again Abelian integrals and thus can be expressed in terms of
{µk}.

In practice the simplest way to do this is to use the identities

µm =
∮
umP (u) du

P
3
2 (u)

=
n∑
j=0

ajIj+m

for m ∈ {0..n− 1} and ∮
umP ′(u) du

P
3
2 (u)

= 2m
∮
um−1 du√
P (u)

= 2nµm−1 (18)

n∑
j=0

jajIj+m−1 = 2mµm−1 (19)

for m ∈ {0, 1, ..., n}. This gives a linear system of 2n− 1 equations in 2n− 1 unknowns {Ik}2n−2
k=0 :

a0 a1 . . . an 0 0 . . .
0 a0 a1 . . . an 0 . . .
...

. . . . . . . . . . . . . . . . . .
0 . . . 0 a0 a1 . . . an
a1 2a2 . . . nan 0 0 . . .
0 a1 2a2 . . . nan 0 . . .
...

. . . . . . . . . . . . . . . . . .
0 . . . 0 a1 2a2 . . . nan





I0
I1
I2
I3
...
...

I2n−3

I2n−2


=



µ0

µ1
...

µn−2

0
2µ0

...
2(n− 1)µn−2


The matrix which arises in the above linear systems is the Sylvester matrix of P (u) and P ′(u). It
is a standard result of commutative algebra that the Sylvester matrix of P (u) and Q(u) is singular
if and only if the polynomials P and Q have a common root. In our case P (u) and P ′(u) having
a common root is equivalent to P (u) having a root of higher multiplicity. In the case where P
has a multiple root the a pair of branch points degenerate to a pole and the genus of the surface
decreases by one. We will later work an example where this occurs.

For a given polynomial it is rather straightforward to work these out, particularly with the aid
of computer algebra systems. In this paper we did some of the more laborious calculations with
Mathematica[25]. Some examples are presented in the next section.
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5 Examples

5.1 The Korteweg -de Vries Equation (KdV-1)

The Korteweg-de Vries (KdV) equation

ut + uxxx + (u2)x = 0

is, of course, completely integrable and the spectrum of the linearized flow can in principle be
understood by the machinery of the inverse scattering transform. We note in particular the con-
struction via Baker-Akheizer functions detailed in the text of Belokolos, Bobenko, Enolskii, Its and
Matveev[4]. Nevertheless this problem provides a good test for our methods, which we believe to
be considerably simpler and easier to calculate than the algebro-geometric approach.

In the notation of (3) the effective potential is given by

V (u) = −au− cu
2

2
+
u3

3

and the solutions are associated with the genus-1 curve y2 = E+au+cu2/2−u3/3. The discriminant
is given by

disc(E − V (u)) =
1
12
(
16a3 + 3a2c2 − 36Eac− 6Ec3 − 36E2

)
and the variety defined by the vanishing of the discriminant (for c = 1) is explicitly parameterized
by

a = s2 − s

E =
s2

2
− 2s3

3
.

On the zero set of the discriminant the solutions are (up to a Galilean boost) the solitary wave
and constant solution. The KdV equation has (non-constant) periodic solutions if and only if
disc(E − V (u)) is positive. Moreover, by scaling (and possibly a map u 7→ −u) the wave speed c
can be assumed to be c = +1.

The Picard-Fuchs system for the curve associated to KdV-1 is the following set of five linear
equations: 

E a c/2 1/3 0
0 E a c/2 1/3
a c −1 0 0
0 a c −1 0
0 0 a c −1




I0
I1
I2
I3
I4

 =


T
M
0

2T
4M

 ,

where

µk =
∮

uk du√
2R(u; a,E, c)

, Ik =
∮

uk du

(2R(u; a,E, c))3/2
.

After some algebra the various Jacobians arising in Theorem 1 and the modulational stability index
(4) can be expressed in terms of the period T and the mass M as follows:
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TE =

(
4a+ c2

)
M + (6E + ac)T

12 disc(R(u, a,E, c))

{T,M}a,E = −
T 2V ′(MT )

12 disc(R(u, a,E, c))

{T,M,P}a,E,c =
T 3(E − V (MT ))

2 disc(R(u, a,E, c))

2∆MI =

(
α3,0T

3 + α2,1T
2M + α1,2TM

2 + α0,3M
3
)2

21037 disc3(R(u, a,E, c))

where

α3,0 = 36E + 18aEc− 8a3

α2,1 = 18Ec2 − 6a2c+ 36aE

α1,2 = −18cE + 24a2 + 3ac2

α0,3 = c3 + 6ac+ 12E

These quantities are all positive. The positivity of TE follows from a result of Schaaf[35]. The
non-negativity of ∆MI is clear: in principle the cubic polynomial in the numerator could vanish
but numerics shows that it does not in the region where disc(R(u, a,E, c)) > 0. The positivity of
{T,M,P}a,E,c is clear. Finally {T,M}a,E is positive from Jensen’s inequality since∮

V ′(u) du√
R(u; a,E, c)

= 0.

Remark 9. Recall from [11] that the Jacobian {T,M,P}a,E,c arises naturally as an orientation
index for the gKdV linearized spectral problem for a sufficiently smooth nonlinearity. Indeed, one
has that {T,M,P}a,E,c < 0 is sufficient to imply the existence of a non-zero real periodic eigenvalue
of the linearized operator ∂xL, i.e. an unstable real eigenvalue in L2(T1). Moreover, from [26] it
follows that if TE > 0, then such an eigenvalue can not exist if {T,M,P}a,E,c is positive: however,
no such claim can be made in the case where TE < 0.

Theorem 1 now implies the following index result: if one considers the linearized operator
acting on L2(Tk) for k ∈ N then ux has 2k roots in Tk and the number of real eigenvalues, complex
eigenvalues, and imaginary eigenvalues of negative Krein signature satisfy

kR + 2k−I + 2kC = 2(k − 1) (20)

In particular when k = 1, so one is considering stability to perturbations of the same period, the
only eigenvalues lie on the imaginary axis and have positive Krein signature thus proving orbital
stability of such solutions in L2(T1). Furthermore, considered as an operator on L2[−∞,∞] the
spectrum in a neighborhood of the origin in the spectral domain consists of the imaginary axis with
multiplicity three, thus implying modulational stability of the periodic traveling wave solutions of
the KdV equation.

This example provides an independent check of the result: in the KdV case Kapitula and
Deconinck have explicitly computed the spectrum of the linearized KdV, and shown that the
spectrum consists of the imaginary axis, a symmetric interval of which is of multiplicity three and the



5 EXAMPLES 19

remainder of which has multiplicity one. They further show that in the interval of multiplicity three
there are two eigenvalues of positive Krein signature and one of negative Krein signature, and that
the region of spetral multiplicity one has only positive Krein signature eigenvalues. By extending
their analysis one can actually count the number of eigenvalues of negative Krein signature of the
operator on Tk and one finds that it is 2(k − 1), in agreement with the above calculation.

5.2 Example: Modified Korteweg- de Vries (KdV-2)

The MKdV equation
ut + uxxx ± (u3)x = 0

arises as a model for wave propagation in plasmas and as a model for the propagation of interfacial
waves in a stratified medium. It is also integrable and the same caveats apply as for the KdV
regarding the algebro-geometric construction of the spectrum of the linearized operator. The MKdV
is invariant under the scaling x 7→ αx, t 7→ α3t, u 7→ α−

2
3u, and thus the wavespeed c can be scaled

to be c = 0,±1. The most physically and mathematically interesting case is the focusing MKdV
(the plus sign above) with right-moving waves where c can be scaled to +1. In this case the (genus
1) curve is given by

y2 = (ux)2 = E + au+
1
2
u2 − u4

4
For the focusing MKdV the zero set of the discriminant is the familiar swallowtail curve defined
implicitly by the equation

disc(E + au+ u2/2− u4/4) = 2a2 − 27a4 − 4E + 72a2E − 32E2 − 64E3 = 0

or by the polynomial parametric representation

a = s− s3

E =
s2

2
− 3s4

4

- see Figure 3) for an illustration.
On the discriminant the torus “pinches off” and degenerates to a cylinder, and all of the elliptic

integrals can be evaluated in terms of elementary functions. Unlike the KdV case, where the only
periodic solutions on the curve of vanishing discriminant are constant, the MKdV admits non-trivial
periodic solutions on the swallowtail curve. At every point on the discriminant there is a constant
solution u(x) = −s. Along the upper (dashed) branch (s ∈ [−

√
3

3 ,
√

3
3 ]) there is a solitary wave

homoclinic to u = s defined by

1√
2(1−s2)

1−3s2
cosh(

√
1− 3s2η)− 2s

1−3s2

− s

with η = x − x0 − t. The soliton solution corresponds to s = 0. Along the lower (dotted) branch
s ∈ [−1,−

√
3

3 ]∪ [
√

3
3 , 1] in addition to the constant solution there is a non-constant periodic solution.

u(η) =
1

s
3s2−1

+
√

2(1−s2)

6s2−2
sin(
√

3s2 − 1η)
− s

Along the remaining portions of the curve there are no non-constant solutions.



5 EXAMPLES 20

Figure 3: The configuration space for focusing MKdV with c = +1. The swallowtail figure
divides the plane into regions containing 0, 1, and 2 periodic solutions. The domain is colored
according to the sign of {T,M,P}a,E,c. The spectral pictures correspond to various regions
in parameter space. For example, the picture in the bottom left corner was numerically
derived for the parameter values (a,E) = (.35, .2), which corresponds to region (c).

The modulational instability index turns out, in this case, to be particularly simple. After
solving the Picard-Fuchs system

E a 1
2 0 −1

4 0 0
0 E a 1

2 0 −1
4 0

0 0 E a 1
2 0 −1

4
a 1 0 −1 0 0 0
0 a 1 0 −1 0 0
0 0 a 1 0 −1 0
0 0 0 a 1 0 −1





I0
I1
I2
I3
I4
I5
I6


=



T
M
P
0

2T
4M
6P


one finds the following expressions for the various Jacobians:

TE = −(3a2 − 16E2 − 4E)T + (9a2 − 4E − 1)P
16 disc(E − V (u))

{T,M}a,E = −(3a2 − 4E)T 2 + (4E − 1)PT + P 2

16 disc(E − V (u))

{T,M,P}a,E,c = −(2a2 − 4E)T 3 + 4EPT 2 − TP 2 + P 3

32 disc(E − V (u))

∆MI =

(
α0,3T

3 + α1,2T
2P + α2,1TP

2 + α3,0P
3
)2

4194304 disc(E − V (u))3

where

disc(E − V (u)) := disc(E + au+ u2/2− u4/4) = 27a4 − 72Ea2 − 2a2 + 64E3 + 32E2 + 4E
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and

α3,0 = 1 + 36E − 27a2

α2,1 = 27a2 + 144E2 − 60E

α1,2 = 36E − 240E2 − 18a2 + 108E

α0,3 = 54a4 − 180a2E + 144E2 + 64E.

We note a few things. First notice that while the Picard-Fuchs system involves T , M , and P
the resulting Jacobians only involve T and P . While this is not obvious from the point of view of
linear algebra there is a clear complex analytic reason why this must be so: the Abelian differentials
defining T and P have zero residue about the point at infinity, as do TE , Ta . . . Pc, while M has a
non-vanishing residue at infinity. Thus TE , Ta . . . Pc must be expressible in terms of only T and P .

Secondly we note that while there are two distinct families of solutions inside the swallowtail
they have the same orientation index {T,M,P}a,E,c and modulational instability index ∆MI . This
is special to the genus one case since the integrals over one cycle can be simply related to the
integrals over the other cycle via∮

γleft

du√
E − V (u)

=
∮
γright

du√
E − V (u)

(21)∮
γleft

udu√
E − V (u)

=
∮
γright

udu√
E − V (u)

+ 2
√

2π (22)∮
γleft

u2 du√
E − V (u)

=
∮
γright

u2 du√
E − V (u)

(23)

by deforming the contour onto the other cycle and picking up the contribution from the residue at
infinity. Since the orientation and modulational instability indices are built of derivatives of the
above quantities these indices must be the same for both families of solutions.

The above observation extends the calculation of Haragus and Kapitula [24] for the zero am-
plitude waves to the periodic waves on the swallowtail curve defined in equation (5.2). Haragus
and Kapitula utilize a perturbation argument to calculate the stability properties of the periodic
waves in a small neighborhood of the bifurcation point - in other words in a small neighborhood of
the discriminant, when one of the cycles has almost pinched off. The family of (large amplitude)
periodic waves in (5.2) represents the solutions associated to the other cycle, which the above shows
to have the same stability indices.

As in the KdV case the modulational instability index, which is a homogeneous polynomial of
degree 6 in T and P , can be expressed as the square of a homogeneous polynomial of degree 3 over
an odd power of the discriminant of the polynomial E − V (u). A similar expression holds in the
defocusing case, as well as for general values of c. The sign of this quantity is obviously the same
as of the sign of the discriminant of the quartic, which is in turn positive if the quartic has no real
roots or 4 real roots, and negative if the quartic has two only real roots. Thus we establish the
following surprising fact:

Theorem 2. The traveling wave solutions to the MKdV equation

ut + uxxx ± (u3)x = 0

are modulationally unstable for a given set of parameter values if the polynomial

E + au+ cu2/2± u4/4

has two real roots, and are modulationally stable if it has four real roots.
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Remark 10. In the case of focusing MKdV, Theorem 2 implies that if the parameter values give rise
to one periodic solution then this solution is unstable to perturbations of sufficiently long wavelength.
If there are two periodic solutions then the spectrum of the linearization about one of these solutions
in the neighborhood of the origin consists of the imaginary axis with multiplicity three. For the case
of defocusing MKdV the situation is slightly different: there only exists a periodic solution when the
polynomial has positive discriminant, in which case this solution is modulationally stable - there is
no spectrum off of the real axis in a neighborhood of the origin.

Note that while this problem is in principle completely solvable using algebro-geometric tech-
niques, Theorem 2 is new. While explicit the classical algebro-geometric calculations are sufficiently
complicated that they are exceedingly tedious to do in general. For examples of this sort of calcu-
lation see the original text of Belokolos et. al.[4] as well as the papers of Bottman and Deconinck[8]
and Deconinck and Kapitula[12].

We now summarize the more interesting situation of the focusing MKdV in Figure 3 and below:

(a) There are two families of solutions in this region. For both of these solutions the modula-
tional instability index is positive and thus in a neighborhood of the origin the imaginary
axis is in the spectrum with multiplicity three. Solutions in this region have TE > 0,
{T,M}E,a < 0, and {T,M,P}E,a,c < 0 implying kR + 2k−I + 2kC = 2(k − 1).

The solutions in the remaining regions have a modulational instability index that is negative showing
that they are always unstable to perturbations of sufficiently long wavelength.

(b) In this region TE < 0, {T,M}E,a > 0, and {T,M,P}E,a,c > 0 implying kR + 2k−I + 2kC =
2k − 1.

(c) In this region TE < 0, {T,M}E,a < 0, and {T,M,P}E,a,c > 0 implying kR + 2k−I + 2kC =
2k−1. As one crosses between regions b and c the indices n(L|H1) and n(D) both increase
(resp. decrease) by one, leaving the total count the same.

(d) In this region TE < 0, {T,M}E,a < 0, and {T,M,P}E,a,c < 0 implying kR + 2k−I + 2kC =
2(k − 1).

(e) In this region TE > 0, {T,M}E,a < 0, and {T,M,P}E,a,c < 0 implying kR + 2k−I + 2kC =
2(k − 1).

In regions (a), (d), and (e) when considering periodic perturbations (k = 1) one finds that kR +
2k−I + 2kC = 0 implying both spectral and orbital stability in L2(T1). However, as mentioned
above, in regions (d) and (e) the solution is spectrally unstable in L2(Tk) for k ∈ N sufficiently
large. Moreover, in regions (b) and (c) there always exists a non-zero real periodic eigenvalue, i.e.
the linearized operator ∂xL acting on L2(Tk) always has a non-zero real eigenvalue and hence such
solutions are always spectrally unstable.

Remark 11. It should be noted that the above counts are consistent with the calculations of De-
coninck and Kapitula [12] in which they consider stability of the cnoidal wave solutions

U(x, t;κ) =
√

2µ cn
(
µx− µ2(2− κ2)t; k

)
of the focusing MKdV equation, where µ > 0 and κ ∈ [0, 1). Such solutions always correspond
to regions (b) and (d) along with the constraint a = 0. There, the authors find numerically that
there is a critical elliptic-modulus κ∗ ≈ 0.909 such that solutions with 0 ≤ κ < κ∗, corresponding
to region (b) are orbitally stable in L2(T1) while solutions with κ∗ < κ < 1, corresponding to region
(d) are spectrally unstable in L2(Tk) for all k ∈ N due to the presence of a non-zero real eigenvalue
of the linearized operator.
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5.3 Example: L2 critical Korteweg-de Vries (KdV-4)

Finally we consider the equation
ut + uxxx + (u5)x = 0.

This equation is not a physical model for any system that we are aware of but is mathematically
interesting for a number of reasons. This is the power where the solitary waves first go unstable.
Equivalently this is the L2 critical case, where one has the scaling u 7→ √γu(γx) preserving the
L2 norm and the relative contributions of the kinetic and potential energy to the Hamiltonian.
Again we focus on the focusing case, which is the more interesting, and we scale everything so that
c = +1. In this case the curve of genus 2 is given by

y2 = (ux)2 = 2(E + au+
1
2
u2 − u6

6
)

As is always the case for KdV − 2n the parameter space is divided by a swallowtail curve (the
discriminant) into regions containing no periodic solution, one periodic solution, and two periodic
solutions. The implicit representation is given by

Γ = {(a,E)| − 48a2 + 3125a6 + 96E − 11250a4E + 10800a2E2 − 1728E3 + 7776E5 = 0}

or parametrically by

a = s5 − s, E =
s2

2
− 5s6

6
(see Figure 4). Again the picture is qualitatively similar to the MKdV case: the portion of the
swallowtail parameterized by s ∈ (−5−

1
4 , 5−

1
4 ) represents parameter values for which there are

two solutions: one constant and one homoclinic to a constant, with the origin representing the
soliton solution (the solution homoclinic to zero) and the zero solution. The portions of the curves
parameterized by s ∈ (− 1

4√5
,−1) ∪ ( 1

4√5
, 1) represent parameter values for which there are two

solutions: a constant and a periodic solution. The remainder of the curve represents parameter
values for which there is only the constant solution.

The Picard-Fuchs system is following set of eleven equations:

E a 1
2 0 0 0 −1

6 0 0 0 0
0 E a 1

2 0 0 0 −1
6 0 0 0

0 0 E a 1
2 0 0 0 −1

6 0 0
0 0 0 E a 1

2 0 0 0 −1
6 0

0 0 0 0 E a 1
2 0 0 0 −1

6
a 1 0 0 0 −1 0 0 0 0 0
0 a 1 0 0 0 −1 0 0 0 0
0 0 a 1 0 0 0 −1 0 0 0
0 0 0 a 1 0 0 0 −1 0 0
0 0 0 0 a 1 0 0 0 −1 0
0 0 0 0 0 a 1 0 0 0 −1





I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10



=



µ0

µ1

µ2

µ3

µ4

0
2µ0

4µ1

6µ2

8µ3

10µ4



.

These quantities are homogeneous polynomials in µ0(= T ), µ1(= M), µ3, and µ4 but are in-
dependent of P = µ2 since the differential corresponding to momentum has a non-trivial residue
at infinity, similar to the case of the MKdV. We have explicit expressions for the various Jaco-
bians arising in the theory, but they are cumbersome - the quantity {T,M,P}E,a,c for instance
has

(
4+3−1

3

)
= 20 terms, all of which are non-zero. However they are quite well-suited to symbolic
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Figure 4: The configuration space for focusing KdV-4 with c = +1. The swallowtail figure
divides the plane into regions containing 0, 1, and 2 periodic solutions. The spectral pictures
on the left correspond to various regions in parameter space. For example, the picture in
the upper left corner was numerically derived for the parameter values (a,E) = (1, 0), which
corresponds to region (a’).

manipulation. Below we present some numerics. In the numerics that follow we used the analyt-
ical expressions for the various Jacobians and computed the moments T,M, µ3, µ4 via numerical
integration. This is numerically quite easy and quite stable compared with trying to numerically
differentiate T,M,P .

The stability diagram of these solutions is depicted in Figure 4. Numerics indicate that the
modulational instability index is always negative, indicating that solutions are always modulation-
ally unstable. This is a physically very interesting observation, and seems to be connected with the
fact that KdV-4 is the L2 critical scaling case. The modulational instability of the periodic waves
suggests that these waves are unstable to collapse.

There are three curves emerging from the cusps of the swallowtail. The lowest of these is
the curve on which the orientation index {T,M,P}a,E,c vanishes, the middle (dashed) where TE
vanishes and the upper (dotted) where {T,M}a,E vanishes.

The behavior in the various regions is summarized as follows:

(a) There are two solution families in this region, both of which satisfy TE > 0, {T,M}E,a < 0,
and {T,M,P}E,a,c < 0. This implies that Hessian has two positive eigenvalues, the
linearized operator has no real periodic eigenvalues and that kR + 2k−I + 2kC = 2(k − 1)

(a’) There is only one solution family in this region, otherwise the behavior is the same as in
region (a)

(b) The family of solutions in this region has TE > 0, {T,M}E,a < 0, and {T,M,P}E,a,c > 0.
This implies that kR + 2k−I + 2kC = 2k − 1

(c) The family of solutions in this region has TE < 0, {T,M}E,a < 0, and {T,M,P}E,a,c > 0.
This implies that kR + 2k−I + 2kC = 2k − 1.

(d) The family of solutions in this region has TE < 0, {T,M}E,a > 0, and {T,M,P}E,a,c > 0.
This implies that kR + 2k−I + 2kC = 2k − 1.
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It follows that solutions in region (a) are orbitally stable in L2(T1) and spectrally unstable in L2(Tk)
for k ∈ N sufficiently large. Moreover, solutions in the remaining regions are spectrally unstable in
L2(Tk) for any k ∈ N due to the presence of a non-zero real periodic eigenvalue.

It is interesting that all periodic solutions to the L2 critical KdV are unstable to perturbations of
sufficiently long wavelength (or, equivalently, unstable to peturbations in L2(R). Presumably this is
due to the criticality: the periodic solutions are modulationally unstable to collapse and blow-up.
In contrast the (sub-critical) KdV-3 exhibits some parameter regimes which are modulationally
stable. It would be interesting to understand this phenomenon better.

5.4 A model arising in plasma physics (KdV-1
2
)

The following variant of the Korteweg-de Vries equation

ut + uxxx +
5
2

(u
3
2 )x = 0

has been studied as a model for plasmas. The quantity u, representing a density, must be a positive
quantity. The traveling waves are defined implicitly by∫

du√
2(E + au+ c

2u
2 − u

5
2 )

= x− ct.

The obvious change of variable v2 = u shows that the travelling wave solutions to this equation are
associated with the genus two curve y2 = E + av2 + cv4/2− v5. The period, mass, and momentum
of the travelling wave are given by

T =
∮

du√
2(E + au+ c

2u
2 − u

5
2 )

=
∮

2vdv√
2(E + av2 + c

2v
4 − v5)

(24)

M =
∮

udu√
2(E + au+ c

2u
2 − u

5
2 )

=
∮

2v3dv√
2(E + av2 + c

2v
4 − v5)

(25)

P =
∮

u2du√
2(E + au+ c

2u
2 − u

5
2 )

=
∮

2v5dv√
2(E + av2 + c

2v
4 − v5)

. (26)

Scaling the wavespeed to c = 1 the zero set of the discriminant Γ = {(a,E)|disc(E+av2+ c
2v

4−v5) =
0} is given by

Γ = {E = 0} ∪ {(5/2s3 − s2,−3
2
s5 +

1
2
s4)|s ∈ (−∞,∞)}.

The physically admissable parameter regime is that for which the polynomial has a bounded interval
in which it is non-negative corresponding to a non-negative periodic solution. This is depicted in
Figure (5).

The Picard-Fuchs system is a set of nine equations

E 0 a 0 1
2 −1

5 0 0 0
0 E 0 a 0 1

2 −1
5 0 0

0 0 E 0 a 0 1
2 −1

5 0
0 0 0 E 0 a 0 1

2 −1
5

0 2a 0 2 −1 0 0 0 0
0 0 2a 0 2 −1 0 0 0
0 0 0 2a 0 2 −1 0 0
0 0 0 0 2a 0 2 −1 0
0 0 0 0 0 2a 0 2 −1





I0
I1
I2
I3
I4
I5
I6
I7
I8


=



µ0

µ1

µ2

µ3

0
2µ0

4µ1

6µ2

8µ3


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Figure 5: The parameter space for KdV- 1
2 scaled so that c = 1. The dark region admits

positive periodic traveling waves. Numerical calculation of the instability indices shows that
the traveling waves do not have a real instability or a modulational instability.

Again the stability indices can be reduced to homogeneous polynomials of degree three and six
in the quantities

µj =
∮

2vjdv√
2(E + av2 + c

2v
4 − v5)

j ∈ {0 . . . 3}

The expressions are a little large to write out, so we do not reproduce them here, but they are
well-suited to numerical computations. Numerical evaluation of the analytic formulae suggests that
the Hessian of the classical action always has one negative eigenvalue and two positive eigenvalues,
leading to a count of

kR + 2k−I + 2kC = 2k − 2

while the modulational instability index is always positive, indicating that in a neighborhood of the
origin the imaginary axis is in the spectrum, with multiplicity three. Direct numerical simulations
of the linearized eigenvalue problem support this conclusion.

6 Conclusions

We have proven an index theorem for the linearization of Korteweg-de Vries type flows around
a traveling wave solution and shown that the number of eigenvalues in the right half-plane plus
the number of purely imaginary eigenvalues of negative Krein signature given be expressed in
terms of the Hessian of the classical action of the traveling wave ordinary differential equation or
(equivalently) in terms of the Jacobian of the map from the Lagrange multipliers to the conserved
quantities. In the case of polynomial nonlinearity these quantities can be expressed in terms of
homogeneous polynomials in Abelian integrals on a finite genus Riemann surface.

The main drawback of the result is that it does not really distinguish between the eigenvalues in
the right half-plane, which lead to an instability, and the imaginary eiegnvalues of negative Krein
signature, which are generally not expected to lead to an instability. The index does distinguish
between real eigenvalues and imaginary eigenvalues of negative Krein signature, but only modulo
two. This is sufficient to deal with the solitary wave case, where the only possible instability
mechanism is the emergence of a single real eigenvalue from the origin. However in the periodic
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problem, where the behavior of the spectral problem is much richer, it would be preferable to have
more information.

The modulational instability index gives some additional information about the stability of
solutions. Roughly this quantity allows one to distinguish between imaginary eigenvalues of negative
Krein signature and complex eigenvalues in a neighborhood of the origin. However by the nature
of the way it was derived it does not allow one to conclude global information. We believe that a
stronger result is possible: namely that there is spectrum off of the imaginary axis if and only if
the modulational instability index is negative. In numerical experiments that we have conducted
this has always been true: if the solution is unstable then the modulational instability index is
negative. While we have some ideas of how one might attempt to prove this using Krein signature
arguments we currently do not have a proof.

It is worth noting that there is a large literature devoted to estimating the number of zeroes of
period integrals in connection with the so-called infinitesimal sixteenth Hilbert problem or Arnold-
Hilbert problem (see problem 7 in the survey of Smale [36]). This problem is obviously closely
connected with the one of determining the sign of such period integrals, and techniques from the
former problem might be useful in analyzing the stability of periodic waves. In fact there have
been a few papers in this direction already[23, 21, 9]. Also Hessians of conservation laws arise in
the Whitham theory of integrable systems[28], and some of the techniques developed there may be
of use in the current problem.
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[15] T. Gallay and M. Hǎrǎguş. Orbital stability of periodic waves for the nonlinear Schrödinger
equation. J. Dynam. Differential Equations, 19(4):825–865, 2007.
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