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Abstract

In this paper, we consider the relation between Evans function based approaches to
the stability of periodic travelling waves and other theories based on long wavelength
asymptotics together with Bloch wave expansions. In previous work it was shown by
rigorous Evans function calculations that the formal slow modulation approximation
resulting in the linearized Whitham averaged system accurately describes the spectral
stability to long wavelength perturbations. To clarify the connection between Bloch-
wave based expansions and Evans function based approaches, we reproduce this result
without reference to the Evans function by using direct Bloch-expansion methods and
spectral perturbation analysis. One of the novelties of this approach is that we are able
to calculate the relevant Bloch waves explicitly for arbitrary finite amplitude solutions.
Furthermore, this approach has the advantage of applying in the more general multi-
periodic setting where no conveniently computable Evans function is yet devised.

1 Introduction

In this paper, we consider traveling wave solutions of the generalized Korteweg-de Vries
(GKdV) equation

(1.1) ut = uxxx + f(u)x
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where u is a scalar, x, t ∈ R, and f ∈ C2(R) is a suitable nonlinearity. Equations of this
form arise in a variety of applications and are equally interesting from a mathematical
point of view. If f is a polynomial of degree three or less then the equation is exactly
integrable via the inverse scattering transform. For example, in the case f(u) = u2 equation
(1.1) reduces to the classical KdV equation, a standard model of unidirectional long wave
propagation in a channel[KdV, SH]. The cubic case f(u) = βu3 + αu2, the modified KdV
(mKdV) equation or Gardner equation, arises as a model for large amplitude internal waves
in a density stratified medium, as well as a continuum approximation to bistable Fermi–
Pasta-Ulam lattices[BM] [BO]. In each of these two cases, the corresponding PDE can be
realized as a compatibility condition for a particular Lax pair and hence the corresponding
Cauchy problem can (in principle) be completely solved via the famous inverse scattering
transform. In the integrable case there is an extensive and very beautiful literature on
the Whitham equations for KdV/mKdV (see Lax and Levermore [LL], Flashka, Forest and
McLaughlin[FFM] and more recent references).

However, there are a variety of applications in which equations of form (1.1) arise which
are not completely integrable and hence the inverse scattering transform can not be applied.
For example, in applications in plasma physics equations of the form (1.1) arise with a wide
variety of nonlinearities depending on particular physical considerations [KD] [M] [MS]. In
this paper we study the stability for equations of KdV type for very general nonlinearities
making use only of the integrability of the ordinary differential equation governing the
traveling wave profiles. This ODE is, after an integration, Hamiltonian regardless of the
integrability of the corresponding PDE.

It is well known that (1.1) admits traveling wave solutions of the form

(1.2) u(x, t) = uc(x+ ct)

for c > 0. Historically, there has been much interest in the stability of traveling waves of
the form (1.2) where the profile uc decays exponentially to zero as its argument becomes
unbounded, solutions known as solitary waves. The generalized KdV (1.1) admits solitary
waves solutions and their stability is well understood and dates back to the pioneering work
of Benjamin [B], which was then further developed by Bona, Grillakis, Shatah, Strauss,
Pego, Weinstein and many others.

In general, however, the traveling waves uc are periodic with the solitary waves forming a
(typically co-dimension one) subset. In this paper we consider the stability of the periodic
traveling wave solutions of (1.1). Compared with the solitary wave theory, the stability
theory of periodic traveling waves is much less developed. Existing rigorous results in general
fall into two categories: spectral stability with respect to localized or periodic perturbations
[BrJ, BD], or nonlinear (orbital) stability with respect to periodic perturbations [BrJK, J1,
DK]. Additionally there is a literature of using long-wavelength expansions, often formal
and often based on a Bloch wave decomposition, to attempt to understand the stability.

In this paper we study the modulational stability by using a direct Bloch wave expansion
of the linearized eigenvalue problem. This strategy is in some sense a combination of
formal modulation expansions based on Bloch wave decompositions and rigorous analysis
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based on the Evans function and offers several advantages. One advantage is that Evans
function techniques do not extend to multiple dimensions in a straight-forward way. In
particular, these techniques seem not to apply to study the stability of multiply periodic
solutions, that is, solutions which are periodic in more than one linearly independent spatial
directions. Such equations are prevalent in the context of viscous conservation laws in
multiple dimensions. In contrast, the Bloch expansion approach of the current work is
based on spectral perturbation analysis and hence is not only completely rigorous but also
generalizes to all dimensions with no difficulty. Secondly, the low-frequency Evans function
analysis required to determine modulational instability is often quite tedious and difficult;
see, for example, the analysis in the viscous conservation law case in [OZ1, OZ3, OZ4, Se1].
In contrast, however, we find that the Bloch-expansion methods of this paper are much
more straightforward and reduces the problem to elementary matrix algebra. We should
note, however, that although the our approach is simpler than the Evans calculation given
in [BrJ], it is still nontrivial as a Bloch computation due to the presence of a Jordan block at
the origin; notice this situation does not occur in the context of reaction diffusion equations
where Bloch perturbation methods are widely used. Using this approach, then, we reproduce
the modulational stability results of Bronski and Johnson without any specific mention or
use of the Evans function. While a Bloch wave expansion is a very powerful and classical
tool it often suffers from the fact that the Bloch waves are typically not known explicitly.
This means the results are frequently evaluated in some asymptotic limit, commonly the
small amplitude limit (see [DK,GH,Ha,HK,HaLS] for example). See also the classic work
of Rowlands [Ro] in which similar ideas were used to analyze the long-wavelength stability
of periodic solutions in the context of the nonlinear Schrödinger equation. In the current
paper, following [BrJ], we are able to use Noether’s theorem to explicitly generate the
relevant Bloch waves and thus carry out the calculation for solutions of arbitrary amplitude.

Given the above remarks, we choose to carry out our analysis first in the gKdV case since,
quite surprisingly, all calculations can be done very explicitly and can be readily compared
to the results of [BrJ]. Our hope is that the present analysis may serve as a blueprint of how
to consider the stability multiply periodic structures in more general, and difficult, equations
than simply the gKdV equation. We should remark, however, that a slight variation of our
approach was attempted in the latter half of the analysis in [BrJ]. However, the analysis
was quite cumbersome requiring the asymptotic tracking of eigenfunctions which collapse
to a Jordan block. Our approach does not require such delicate tracking and it is seen that
we only need to asymptotically construct the projections onto the total eigenspace, which
requires only tracking of an appropriate basis not necessarily consisting of eigenfunctions.

Finally, our approach connects in a very interesting way to the recent work of Johnson
and Zumbrun [JZ1]. There, the authors studied the modulational stability of periodic
gKdV waves in the context of Whitham theory; a well developed (formal) physical theory
for dealing with such stability problems. It is important to note, however, that Whitham’s
approach to the KdV equation in [W] does not readily extend to the case of the gKdV
considered here; indeed, in [W] it was assumed that the underlying periodic wave had zero
mean in order to yield a closed system. While this assumption is always justified for the KdV
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equation by Galilean invariance, for more general nonlinearities in (1.1) the profile equation
(2.1) admits periodic wave with nonzero mean and hence Whitham’s method does not apply.
Instead, the analysis in [JZ1] followed the work of Serre [Se1] by rescaling the governing
PDE via the change of variables (x, t) 7→ (εx, εt) and then uses a WKB approximation of the
solution to find a homogenized system which describes the mean behavior of the resulting
approximation. In particular, it was found that a necessary condition for the stability of
such solutions is the hyperbolicity i.e., local well-posedness of the resulting first order
system of partial differential equations by demonstrating that the characteristic polynomial
of the linearized Whitham averaged system accurately describes, to first order, the linearized
dispersion relation arising in the Evans function analysis in [BrJ]. As seen in the recent
work of [JZ4] and [JZ5], there is a deeper analogy between the low-frequency linearized
dispersion relation and the Whitham averaged system at the structural level, suggesting
a useful rescaling of the low-frequency perturbation problem. Moreover, it was seen that
the Whitham modulation equations can provide invaluable information concerning not only
the stability of nonlinear periodic solutions, but also their long-time behavior. It is this
intuition that motivates our low-frequency analysis, and ultimately leads to our derivation
of the Whitham averaged system for the gKdV using Bloch-wave expansions. In particular,
this observation provides us with a rigorous method of justifying at a linearized level1 the
Whitham modulation equations which is independent of Evans function techniques used in
[JZ1]. As mentioned above, such a result is desirable when trying to study the stability of
multiply periodic waves where one does not have a useful notion of an Evans function.

The plan for the paper is as follows. In the next section we discuss the basic properties of
the periodic traveling wave solutions of the gKdV equation (1.1), including a parametriza-
tion which we will find useful in our studies. We will then give a brief account of the results
and methods of the papers [BrJ] and [JZ1] concerning the Evans function and Whitham
theory approaches. We will then begin our analysis by discussing the Bloch decomposition
of the linearized operator about the periodic traveling wave. In particular, we will show
that the projection of the resulting Bloch eigenvalue problem onto the total eigenspace is
a three-by-three matrix which is equivalent (up to similarity) to the linearized Whitham
averaged system. We will then end with some concluding remarks and a discussion on
consequences and open problems inferred from these results.

2 Preliminaries

Throughout this paper, we are concerned with spatially periodic traveling waves of the
gKdV equation (1.1). To begin, we recall the basic properties of such solutions; for more
information, see [BrJ] or [J1].

Traveling wave solutions of the gKdV equation with wave speed c are stationary solutions
(1.1) in the moving coordinate frame x + ct and whose profiles satisfy the traveling wave

1Inheriently, the Whitham equations are nonlinear and hence a full justification of the Whitham mod-
ulation equations for the gKdV would require analysis at the nonlinear level. This is an interesting open
problem and is out of the scope of the current work.
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ordinary differential equation

(2.1) uxxx + f(u)x − cux = 0.

Clearly this equation is the derivative of a nonlinear oscillator equation and can be integrated
up twice to bring the equation to quadrature

(2.2)
u2
x

2
= E + au+

c

2
u2 − F (u)

where F ′ = f and F (0) = 0, and a and E are constants of integration. Moreover, we assume
that F (u) = o(u2) for |u| � 1. The existence of periodic orbits of (2.1) follows from the
standard analysis; a necessary and sufficient condition is that the effective potential energy
V (u; a, c) := F (u) − c

2u
2 − au have a local minimum. It follows that the traveling wave

solutions of (1.1) form a three parameter family of solutions parameterized by the constants
a, E, and c (four parameter if one counts the translation mode). In particular on an open,
not necessarily connected subset D of (a,E, c) ∈ R3 (2.2) has periodic solutions. On each
connected component of D there are a fixed number of periodic solutions. The boundary of
D corresponds to parameter values for which there are homoclinic/heteroclinic orbits and
equilibrium solutions in addition to periodic solutions.

On the set D the turning point equation E = V (u±; a, c) has simple roots u± with u− <
u+ and E > V (u; a, c) for all u ∈ (u−, u+). The roots u± are C1 functions of the traveling
wave parameters a, E, and c and, furthermore, to mod out translation invariance we can
require u(0; a,E, c) = u−(a,E, c) and ux(0; a,E, c) = 0 for all (a,E, c) ∈ D, from which
it follows that the function u(x; a,E, c) is an even periodic solution of (2.1). Under these
assumptions the functions u± are square root branch points of the function

√
E − V (u; a, c).

It follows that the period of the corresponding traveling wave solution of (2.1) is given by

(2.3) T = T (a,E, c) =
√

2
2

∮
Γ

du√
E − V (u; a, c)

,

where integration over Γ represents a complete integration from u− to u+, and then back
to u−, with the negative branch of the square root chosen on the return trip. Alternatively,
one can interpret Γ as a Jordan curve in the complex plane which encloses a bounded set
containing both u− and u+. By a standard procedure, the above integral can be regularized
at the square root branch points and hence represents a C1 function of the traveling wave
parameters on D. Similarly, the conserved quantities of the gKdV flow can be expressed as

M = M(a,E, c) =
√

2
2

∮
Γ

u du√
E − V (u; a, c)

(2.4)

P = P (a,E, c) =
√

2
2

∮
Γ

u2 du√
E − V (u; a, c)

(2.5)

H = H(a,E, c) =
√

2
2

∮
Γ

E − V (u; a, c)− F (u)√
E − V (u; a, c)

du(2.6)
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where again these quantities, representing mass, momentum, and Hamiltonian, respectively,
are finite and C1 functions on D. As seen in [BrJ, BrJK, J1], the gradients of the functions
T,M,P : D → R play an important role in the modulational stability analysis of periodic
traveling waves of the gKdV equation (1.1).

Remark 2.1. Notice that in the derivation of the gKdV [BaMo], the solution u can repre-
sent either the horizontal velocity of a wave profile, or the density of the wave. Thus, the
function M : D → R can properly be interpreted as a “mass” since it is the integral of the
density over space. Similarly, the function P : D → R can be interpreted as a “momentum”
since it is the integral of the density times velocity over space.

To assist with calculations involving gradients of the above conserved quantities consid-
ered as functions on D ⊂ R3, we note the following useful identity. The classical action (in
the sense of action-angle variables) for the profile equation (2.1) is given by

K =
∮

Γ
ux du =

√
2
∮

Γ

√
E − V (u; a, c)du

where the contour Γ is defined as above. This provides a useful generating function for
the conserved quantities of the gKdV flow restricted to the manifold of periodic traveling
waves. Specifically, the classical action satisfies

(2.7) T =
∂K

∂E
, M =

∂K

∂a
, P = 2

∂K

∂c

as well as the identity
K = H + aM +

c

2
P + ET.

Together, these relationships imply the important relation

E∇a,E,cT + a∇a,E,cM +
c

2
∇a,E,cP +∇a,E,cH = 0.

So long as E 6= 0 then, gradients of the period, which is not itself conserved, can be
interchanged with gradients of the genuine conserved quantities of the gKdV flow. As a
result, all gradients and geometric conditions involved in the results in this paper can be
expressed completely in terms of the gradients of the conserved quantities of the gKdV
flow, which seems to be desired from a physical point of view. However, as the quantities T ,
M , and P arise most naturally in the analysis, we shall state our results in terms of these
quantities alone.

We now discuss our main assumptions concerning the parametrization of the family of
periodic traveling wave solutions of (1.1). To begin, we assume throughout this paper the
period is not at a critical point in the energy, i.e. that TE 6= 0. In other words, we assume
that the period serves as a good local coordinate for nearby waves on D with fixed wave
speed c > 0 and parameter a. As seen in [BrJK, J1], such an assumption is natural from the
viewpoint of nonlinear stability. Moreover, we assume the period and mass provide good
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local coordinates for the periodic traveling waves of fixed wave speed c > 0. More precisely,
given (a0, E0, c0) ∈ D with c0 > 0, we assume the map

(a,E) 7→ (T (a,E, c0),M(a,E, c0))

have a unique C1 inverse in a neighborhood of (a0, E0) ∈ R2, which is clearly equivalent
with the non-vanishing of the Jacobian

det
(
∂(T,M)
∂(a,E)

)
at the point (a0, E0, c0). As such Jacobians will be prevalent throughout our analysis, for
notational simplicity we introduce the following Poisson bracket notation for two-by-two
Jacobians

{f, g}x,y := det
(
∂(f, g)
∂(x, y)

)
and the corresponding notation {f, g, h}x,y,z for three-by-three Jacobians. Finally, we as-
sume that the period, mass, and momentum provide good local coordinates for nearby
periodic traveling wave solutions of the gKdV. That is, given (a0, E0, c0) ∈ D with c0 > 0,
we assume that the Jacobian {T,M,P}a,E,c is nonzero. While these re-parametrization
conditions may seem obscure, the non-vanishing of these Jacobians has been seen to be
essential in both the spectral and non-linear stability analysis of periodic gKdV waves in
[BrJ, J1, BrJK]. In particular, these Jacobians have been computed in [BrJK] for several
power-law nonlinearities and, in the cases considered, has been shown to be generically
nonzero. Moreover, such a nondegeneracy condition should not be surprising as a similar
condition is often enforced in the stability theory of solitary waves (see [Bo, B, PW]).

Now, fix a (a0, E0, c0) ∈ D. Then the stability of the corresponding periodic traveling
wave solution may be studied directly by linearizing the PDE

(2.8) ut = uxxx + f(u)x − cux

about the stationary solution u(·, a0, E0, c0) and studying the L2(R) spectrum of the asso-
ciated linearized operator

∂xL[u] := ∂x
(
−∂2

x − f ′(u) + c
)
.

As the coefficients of L[u] are T -periodic, Floquet theory implies the L2 spectrum is purely
continuous and corresponds to the union of the L∞ eigenvalues corresponding to considering
the linearized operator with periodic boundary conditions v(x+T ) = eiκv(x) for all x ∈ R,
where κ ∈ (−π, π] is referred to as the Floquet exponent and is uniquely defined mod 2π. In
particular, it follows that µ ∈ spec(∂xL[u]) if and only if ∂xL[u] has a bounded eigenfunction
v satisfying v(x+T ) = eiκv(x) for some κ ∈ R. More precisely, writing the spectral problem
∂xL[u]v = µv as a first order system

(2.9) Y ′(x) = H(x, µ)Y (x),
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and defining the monodromy map M(µ) := Φ(T )Φ(0)−1, where Φ is a matrix solution of
(2.9), it follows that µ ∈ C belongs to the L2 spectrum of ∂xL[u] if and only if the periodic
Evans function

D(µ, κ) := det
(
M(µ)− eiκI

)
vanishes for some κ ∈ R.

When studying the modulational stability of the stationary periodic solution u(·; a0, E0, c0)
it suffices to study the zero set of the Evans function at low frequencies, i.e. seek solutions
of D(µ, κ) = 0 for |(µ, κ)| � 1. Indeed, notice that the low-frequency expansion µ(κ) for
(µ, κ) near (0, 0) may be expected to determine the long-time behavior and can be derived
by the lowest order terms of the Evans function in a neighborhood of (0, 0). As a first step
in expanding D, notice by translation invariance of (2.8) it follows that

∂xL[u]ux = 0,

that is, ux is in the right T -periodic kernel of the ∂xL[u]. It immediately follows that
D(0, 0) = 0, and hence to determine modulational stability we must find all solutions of the
form (µ(κ), κ) of the equation D(µ, κ) = 0 in a neighborhood of κ = 0. Using Noether’s
theorem, or appropriately differentiating the integrated profile equation (2.2), it follows that
the functions ua and uE formally satisfy

∂xL[u]ua = ∂xL[u]uE = 0, ∂xL[u]uc = −ux.

However, these functions are not in general T -periodic due to the secular dependence of
the period on the parameters a, E, and c. Nevertheless, one can take linear combinations
of these functions to form another T -periodic null-direction and a T -periodic function in a
Jordan chain above the translation direction. The key point here is this: since we are able
to generate a three parameter family of periodic solutions the derivatives of these solutions
generate all of the Bloch functions in the kernel of the linearized operator. A tedious, but
fairly straightforward, calculation (see [BrJ]) now yields

(2.10) D(µ, κ) = ∆(µ, κ) +O(|µ|4 + κ4),

where ∆ represents a homogeneous degree three polynomial of the variables µ and κ. Defin-
ing the projective coordinate y = iκ

µ in a neighborhood of µ = 0, we find that the modula-
tional stability of the underlying periodic wave u(·; a0, E0, c0) may then be determined by
the discriminant of the polynomial R(y) := µ−3∆ (1,−iy), which takes the explicit form

(2.11) R(y) = −y3 +
y

2
({T, P}E,c + 2{M,P}a,E)− 1

2
{T,M,P}a,E,c.

Modulational stability then corresponds with R having three real roots, while the presence
of root with nonzero imaginary part implies modulational instability.

On the other hand, we may also study the stability of the solution u(·; a0, E0, c0) through
the formal approach of Whitham theory. Indeed, recalling the recent work of [JZ1] we find
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upon rescaling (1.1) by (x, t) 7→ (εx, εt) and carrying out a formal WKB expansion as ε→ 0
a closed form system of three averaged, or homogenized, equations of the form

(2.12) ∂t 〈Mω,Pω, ω〉 (u̇) + ∂x 〈F,G,H〉 (u̇) = 0

which we refer to as the Whitham averaged system2, where ω = T−1 and u̇ represents the
equivalence class (modulo spatial translation) of a periodic traveling wave solution in the
vicinity of the underlying (fixed) periodic wave u(·; a0, E0, c0). The problem of stability of
u(·; a0, E0, c0) to long-wavelength perturbations may heuristically expected to be related to
the linearization of (2.12) about the constant solution u̇ ≡ u(·; a0, E0, c0), provided the WKB
approximation is justifiable by stability considerations. This leads one to the consideration
of the homogeneous degree three linearized dispersion relation

(2.13) ∆̂(µ, κ) := det
(
µ
∂(Mω,Pω, ω)

∂(u̇)
− iκ

T

∂ (F,G,H)
∂(u̇)

)
(u(·; a0, E0, c0)) = 0

where µ corresponds to the Laplace frequency and κ the Floquet exponent.
The main result of [JZ1] was to demonstrate a direct relationship between the above

approaches. In particular, the following theorem was proved.

Theorem 1 ([JZ1]). Under the assumptions that the Whitham system (2.12) is of evolu-
tionary type, i.e. ∂(Mω,Pω,ω)

∂(u̇) is invertible at (a0, E0, c0) ∈ D, and that the matrix ∂(u̇)
∂(a,E,c) is

invertible at (a0, E0, c0) ∈ D, we have that in a neighborhood of (µ, κ) = (0, 0) the asymptotic
expansion

D(µ, κ) = Γ0∆̂(µ, κ) +O(|µ|4 + κ4)

for some constant Γ0 6= 0.

Remark 2.2. The assumption in Theorem 1 that ∂(Mω,Pω,ω)
∂(u̇) is invertible forces the Whitham

averaged system (2.12) to be of evolutionary type. Moreover, notice that the Whitham aver-
aged system is inherently a relation of functions of the variable u̇, while the Evans function
calculations from [BrJ] utilize a parametrization of the family of traveling wave solutions
of (2.1) (modulo spatial translation) by the parameters (a,E, c). In order to compare the
two linearized dispersion relations ∆(µ, κ) and ∆̂(µ, κ) then we must ensure that we may
freely interchange between these variables, i.e. we must assume that the matrix ∂(u̇)

∂(a,E,c) is
invertible at the underlying periodic wave.

That is, up to a constant, the dispersion relation (2.13) for the homogenized system
(2.12) accurately describes the low-frequency limit of the exact linearized dispersion relation
described in (2.10). As a result, Theorem 1 may be regarded as a justification at a linearized
level of the WKB expansion and the formal Whitham procedure as applied to the gKdV

2It is important to note these equations are not the Whitham equations for the gKdV, which are tra-
ditionally the full nonlinear equations resulting from a formal WKB expansion. As seen in [JZ1], a formal
WKB expansion yields terms of divergence form which vanish upon averaging and results in the homogenized
system (2.12). This motivates our referring to (2.12) as the Whitham averaged system.
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equation. The importance of this result stems from our discussion in the previous section:
although the Evans function techniques of [BrJ] do not extend in a straightforward way to
multiperiodic waves, the formal Whitham procedure may still be carried out nonetheless.
However, it follows that we must find a more robust method of study to justify the Whitham
expansion in higher dimensional cases. The purpose of this paper is to present precisely such
a method using Bloch-expansions of the linearized operator near zero-frequency. Indeed,
we will show how this general method in the case of the gKdV equation may be used to
easily rigorously reproduce the linearized dispersion relation ∆̂(µ, κ) corresponding to the
Whitham averaged system as well as justifying at a linearized level the Whitham expansion
beyond stability to the level of long-time behavior of the perturbation.

3 Bloch Decompositions and Modulational Stability

In this section, we detail the methods of our modulational stability analysis by utilizing
Bloch-wave decompositions of the linearized problem. In particular, our goal is to provide
a rigorous justification at the linearized level of the Whitham expansion described in the
previous section without reference to the Evans function. To this end, recall from Floquet
theory that any bounded eigenfunction v of ∂xL[u] must satisfy

v(x+ T ) = eiκv(x)

for some κ ∈ (−π, π]. Defining ε = ε(κ) = iκ
T , it follows that v must be of the form

v(x) = eεxP (x)

for some κ ∈ (−π, π] and some T -periodic function P which is an eigenfunction of the
corresponding operator

(3.1) Lε = e−εx∂xL[u]eεx.

Notice that Lε can be expanded as

Lε = L0 + εL1 + ε2L2 − ε3

where L0 := ∂xL[u] is the original linearized operator, L1 := L[u] − 2∂2
x, and L2 := −3∂x.

With this motivation, we introduce a one-parameter family of Bloch-operators Lε defined
in (3.1) considered on the real Hilbert space L2

per([0, T ]). By standard results in Floquet
theory, the spectrum of a given operator Lε is discrete consisting of point eigenvalues and
satisfy

specL2(R) (∂xL[u]) =
⋃
ε

spec(Lε)

and hence the L2(R) spectrum of the linearized operator ∂xL[u] can be parameterized by
the parameter ε. As a result, the above decomposition reduces the problem of determining
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the continuous spectrum of the operator ∂xL[u] to that of determining the discrete spectrum
of the one-parameter family of operators Lε.

As we are interested in the modulational stability of the solution u, we begin our analysis
by studying the null-space of the unperturbed operator L0 = ∂xL[u] acting on Lper([0, T ]).
We will see that under certain nondegeneracy conditions L0 has a two-dimensional kernel
with a one-dimeisional Jordan chain. It follows that the origin is a T -periodic eigenvalue
of L0 with algebraic multiplicity three, and hence for |ε| � 1, considering Lε as a small
perturbation of L0, there will be three eigenvalues bifurcating from the ε = 0 state. To
determine modulational stability then, we will determine conditions which imply these
bifurcating eigenvalues are confined to the imaginary axis.

To begin, we formalize the comments of the previous section concerning the structure of
the generalized null-space of the unperturbed linearized operator L0 = ∂xL[u] by recalling
the following lemma from [BrJ, BrJK].

Lemma 3.1 ([BrJ, BrJK]). Suppose that u(x; a0, E0, c0) is a T -periodic solution of the
traveling wave ordinary differential equation (2.1), and that the Jacobian determinants TE,
{T,M}a,E, and {T,M,P}a,E,c are nonzero at (a0, E0, c0) ∈ D. Then the functions

φ0 = {T, u}a,E ψ0 = 1

φ1 = {T,M}a,E ux ψ1 =
∫ x

0
φ2(s)ds

φ2 = {u, T,M}a,E,c ψ2 = {T,M}E,c + {T,M}a,Eu

satisfy

L0φ0 = L0φ1 = 0 L†0ψ0 = L†0ψ2 = 0

L0φ2 = −φ1 L†0ψ1 = ψ2

In particular, if we further assume that {T,M}a,E and {T,M,P}a,E,c are nonzero at (a0, E0, c0),
then the functions {φj}3j=1 forms a basis for the generalized null-eigenspace of L0, and the
functions {ψj}3j=1 forms a basis for the generalized null-eigenspace of L†0. Furthermore, the
orthogonality relations

〈ψi, Ljφk〉L2
per([0,T ]) = 0

hold when i+ j + k = 0 mod(2).

Remark 3.2. It should be clear that what is needed here is that the profile equation (2.1)
should admit a “full family” of periodic traveling waves - an equation which is kth order in
space should admit a k parameter family of periodic traveling waves. This is what allows us
to generate all of the necessary Bloch functions. This is true of gKdV along with a number
of other nonlinear dispersive equations.

Throughout the rest of our analysis, we will make the nondegeneracy assumption that
the quantities TE , {T,M}a,E , and {T,M,P}a,E,c are nonzero (see the previous section).
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Lemma 3.1 then implies, in essence, that the elements of the T -periodic kernel of the
unperturbed operator L0 are given by elements of the tangent space to the (two-dimensional)
manifold of solutions of fixed period and fixed wavespeed, while the element of the first
generalized kernel is given by a vector in the tangent space to the (three-dimensional)
manifold of solutions of fixed period with no restrictions on wavespeed. It immediately
follows that the origin is a T -periodic eigenvalue (corresponding to ε = 0, i.e. κ = 0)
of L0 of algebraic multiplicity three and geometric multiplicity two. Next, we vary κ in
a neighborhood of zero to express the three eigenvalues bifurcating from the origin and
consider the spectral problem

Lεv(ε) = µ(ε)v(ε)

for |ε| � 1, where we now make the additional assumption that the three branches of the
function µ(ε) bifurcating from the µ(0) = 0 state are distinct3. Our first goal is to show that
the spectrum µ(ε) and hence the corresponding eigenfunctions v(ε) are sufficiently smooth
(C1) in ε. The stronger result of analyticity was proved in [BrJ] using the Weierstrass-
Preparation theorem and the Fredholm alternative. Here, we follow the methods from
[JZ5] to offer an alternative proof which is more suitable for our methods.

Lemma 3.3. Assuming the quantities {T,M}a,E and {T,M,P}a,E,c are nonzero, the eigen-
values µj(ε) of Lε are C1 functions of ε for |ε| � 1.

Proof. To begin notice that since µ = 0 is an isolated eigenvalue of L0, the associated total
right eigenprojection R(0) and total left eigenprojection L(0) perturb analytically in both
ε (see [K]). It follows that we may find locally analytic right and left bases {vj(ε)}3j=1 and
{ṽj(ε)}3j=1 of the associated total eigenspaces given by the range of the projections R(ε)
and L(ε) such that vj(0) = φj and ṽj(0) = ψj . Further defining the vectors V = (v1, v2, v3)
and Ṽ = (ṽ1, ṽ2, ṽ3)∗, where ∗ denotes the matrix adjoint, we may convert the infinite-
dimensional perturbation problem for the operator Lε to a 3×3 matrix perturbation problem
for the matrix4

(3.2) Mε :=
〈
Ṽ ∗(ε), LεV (ε)

〉
.

In particular, the eigenvalues of the matrix Mε are coincide precisely with the eigenvalues
µj(ε) of the operator Lε lying in a neighborhood of µ = 0, and the associated left and right
eigenfunctions of Lε are

fj = V wj and f̃j = w̃j Ṽ
∗

where wj and w̃j are the associated right and left eigenvectors of Mε, respectively. Thus,
to demonstrate the desired smoothness of the spectrum of the operator Lε near the origin

3In the case where two or more branches coincide to leading order, more delicate analysis is required
than what is presented here. In particular, all asymptotic expansions must be continued to at least the next
order in order to appropriately track all three branches.

4Throughout this work, the notation 〈·, ·〉 will always denote the standard inner product on L2
per([0, T ])

given by 〈g, h〉 =
∫ T

0
gh dx. Whether the inner product is for scalar or vector valued functions will be clear

from context.
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for |ε| � 1, we need only demonstrate that the three eigenvalues of the matrix Mε have the
desired smoothness properties, which is a seemingly much easier task.

Next, we expand the vectors

(3.3)
vj(ε) = φj + εqj(ε) +O(|ε|2)

ṽj(ε) = ψj + εq̃j(ε) +O(|ε|2)

and expand the matrix Mε as

Mε = M0 + εM1 +O(|ε|2).

Notice that there is some flexibility in our choice of the functions qj and q̃j , a fact that we
will exploit later. Now, however, our calculation does not depend on a particular choice of
the expansions in (3.3). From Lemma 3.1 a straightforward computation shows that

(3.4) M0 =

 0 0 0
0 0 〈ψ1, L0φ2〉
0 0 0


where 〈ψ1, L0φ2〉 = 1

2{T,M}a,E{T,M,P}a,E,c is nonzero by assumption reflecting the Jor-
dan structure of the unperturbed operator L0. By standard matrix perturbation theory,
the spectrum of the matrix Mε is C1 in ε provided the entries [M1]1,2 and [M1]3,2 of the
matrix M1 are both zero. Using Lemma 3.1 again, it indeed follows that

[M1]1,2 = 〈ψ0, L1φ1 + L0q1〉+ 〈q̃0, L0φ1〉 = 0
[M1]3,2 = 〈ψ2, L1φ1 + L0q1〉+ 〈q̃2, L0φ1〉 = 0

and hence the spectrum is C1(R) in the parameter ε near ε = 0 as claimed.

As a result of Lemma 3.3, the associated (non-normalized) eigenfunctions bifurcating
from the generalized null-space are C1 in the parameter ε in a neighborhood of ε = 0.
Moreover, our overall strategy is now clear: since the eigenvalues of Mε correspond to the
eigenvalues of the Bloch operator Lε near the origin, we need only study the characteristic
polynomial of the matrix Mε near ε = 0 in order to understand the modulational stability
of the underlying periodic wave. However, notice that by equation (3.4) the unperturbed
matrix M0 has a a non-trivial Jordan block, and hence the analysis of the bifurcating
eigenvalues must be handled with care. In order to describe the breaking of the two-by-two
Jordan block described in Lemma 3.1 for ε small, we rescale matrix Mε in (3.2) as

M̂ε = ε−1S(ε)−1MεS(ε)

where

S(ε) =

 ε 0 0
0 1 0
0 0 ε

 .
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In particular, the matrix M̂ε is an analytic matrix-valued function of ε, and the eigenvalues of
M̂ε are given by νj(ε) = ε−1µj(ε), where µj(ε) represents the eigenvalues of Mε. Notice that
the second coordinate of the vectors in Cn+1 in the perturbation problem (3.2) corresponds
to the coefficient of ux to variations ψ in displacement. Thus, the above rescaling amounts
to substituting for ψ the variable |ε|ψ ∼ ψx of the Whitham average system. Our next goal
is to prove that the characteristic polynomial for the rescaled matrix Mε agrees with that of
the linearized dispersion relation ∆̂(µ, κ) corresponding to the homogenized system (2.12),
i.e. we want to prove that

det
(
εM̂ε − µ

〈
S(ε)−1Ṽ ∗ε , VεS(ε)

〉)
= ∆̂(µ, κ) +O(|µ|4 + |κ|4)

for some nonzero constant C. To this end, we begin by determining the required variations
in the vectors Ṽε and Vε near ε = 0 contribute to leading order in the above equation. We
begin by studying the structure of the matrix M̂ε.

Lemma 3.4. The matrix rescaled M̂ε can be expanded as

M̂ε = ε−1

〈
S−1(ε)

 ψ0 + q̃0

ψ1

ψ2 + εq̃2

 , Lε (φ0, φ1 + εq1, φ2)S(ε)

〉
+ o(1)

in a neighborhood of ε = 0. In particular, the only first order variations of the vectors Vε
and Ṽε which contribute to leading order are q̃0, q̃2 and q1.

Proof. The idea is to undo the rescaling and find which entries of the unscaled matrix Mε

contribute to leading order. To begin, we expand the non-rescaled matrix Mε from (3.2) as

Mε = M0 + εM1 + ε2M2 +O(|ε|3)

and notice that M0 was computed in (3.4) and was shown to be nilpotent but nonzero,
possessing a nontrivial associated Jordan chain of height two. Using Lemma 3.1 a straight-
forward computation shows the matrix M1 can be expressed as

M1 =

 〈ψ0, L1φ0 + L0q0〉 0 〈ψ0, L1φ2〉+ 〈q̃0, L0φ2〉
∗ 〈ψ1, L1φ1 + L0q1〉 ∗

〈ψ2, L1φ0 + L0q0〉 0 〈ψ2, L1φ2〉+ 〈q̃2, L0φ2〉


=

 〈ψ0, L1φ0〉 0 〈ψ0, L1φ2〉+ 〈q̃0, L0φ2〉
∗ 〈ψ1, L1φ1 + L0q1〉 ∗

〈ψ2, L1φ0〉 0 〈ψ2, L1φ2〉+ 〈q̃2, L0φ2〉


where the ∗ terms are not necessary as they contribute to higher order terms in the rescaled
matrix M̂ε. Similarly, the relevant entries of the matrix M2 are given by

M2 =

 ∗ 〈ψ0, L2φ1 + L1q1〉+ 〈q̃0, L1φ1 + L0q1〉 ∗
∗ ∗ ∗
∗ 〈ψ2, L2φ1 + L1q1〉+ 〈q̃2, L1φ1 + L0q1〉 ∗

 .

Therefore, it follows the relevant entries of the matrix Mε up to O(|ε|2) can be evaluated
using only the variations q1 and q̃2, as claimed.
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The main point of the above lemma is that in order to compute to projection of the
operator Lε onto the eigenspace bifurcating null-space at ε = 0 to leading order, we only
need to consider the variations in the bottom of the left and right Jordan chains; all other
variations contribute to terms of higher order. Our next lemma shows that the variation in
the ψ0 direction is also needed to compute the corresponding projection of the identity to
leading order.

Lemma 3.5. Define the matrix Ĩε :=
〈
S(ε)−1Ṽ ∗ε , ṼεS(ε)

〉
. Then Ĩε can be expanded near

ε = 0 as

Ĩε =

〈
S−1(ε)

 ψ0 + εq̃0

ψ1

ψ2 + εq̃2

 , (φ0, φ1 + εq1, φ2)S(ε)

〉
+ o(1).

Proof. As in the proof of Lemma 3.4, we undo the rescaling and find the terms that con-
tribute to leading order. To begin, we expand the matrix Iε :=

〈
Ṽ ∗ε , Vε

〉
as

Iε = I0 + εI1 +O(|ε|2)

Using the fact that 〈ψi, φj〉 = 0 if i 6= j, it follows that

I0 =

 〈ψ0, φ0〉 0 0
0 〈ψ1, φ1〉 0
0 0 〈ψ2, φ2〉


and

I1 =

 ∗ 〈ψ0, q1〉+ 〈q̃0, φ1〉 ∗
∗ ∗ ∗
∗ 〈ψ2, q1〉+ 〈q̃2, φ1〉 ∗


from which the lemma follows by rescaling.

With the above preparations, we can now project the operator Lε − µ(ε) onto the total
eigenspace bifurcating from the origin for small |ε| � 1. Our claim is that the projected and
rescaled matrix agrees with the symbol of the linearized Whitham averaged system, up to a
similarity transformation. To show this, we begin by showing the characteristic polynomial
of the corresponding rescaled matrix agrees with the linearized dispersion relation ∆̂(µ, κ)
corresponding to the linearized Whitham averaged system. Once this is established, the
fact that the bifurcating eigenvalues are distinct will imply the desired similarity.

In order to compute the characteristic polynomial of the matrix projection of the oper-
ator Lε − µ(ε), we must now make a few specific choices as to the variations in the vectors
Ṽε and Vε. As noted in the proof of Lemma 3.3, there is quite a bit of flexibility in our
choice of the expansion (3.3). As a naive choice, we could require that vj(ε) in (3.3) to be
an eigenfunction of Lε for small ε. For example, we could choose the qj to satisfy

L0qj = (λ1 − L1)φj ,
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where λ1 is the corresponding eigenvalue bifurcating from the origin. Similarly we could
choose q̃j to satisfy

L†0q̃j = (λ∗1 − L1)ψj ,

where ∗ denotes complex conjugation and, indeed, we do make this choice for the variation
q̃0. However, these choices for q1 and q̃2 (the variations at the bottom of the Jordan chains)
lead to very cumbersome calculations; see section 4 of [BrJ] where these choices were made
and a Bloch-based modulational stability analysis was attempted. Instead, here we make the
observation that we only need the functions vj(ε) in (3.3) to provide a basis, not necessarily
an eigenbasis, for the near zero eigenspace of the operator Lε. To illustrate this, instead of
choosing the variation in the φ1 direction to satisfy an eigenvalue equation we notice there
are two distinct eigenvalues with expansions

µ1(ε) = ελ1 + o(|ε|),
µ̃1(ε) = ελ̃1 + o(|ε|)

corresponding the eigenfunctions φ1 +εg+o(|ε|) and φ1 +εĝ+o(|ε|). In particular, it follows
that the functions g and ĝ satisfy the equations

L0g = (λ1 − L1)φ1,

L0ĝ = (λ̂1 − L1)φ1.

Defining q1 =
(
λ̂1 − λ1

)−1 (
λ̂1g − λ1ĝ

)
then, it follows that the function q1 to satisfies

L0q1 =
(
λ̂1 − λ1

)−1 (
λ̂1(λ1 − L1)φ1 − λ1(λ̂1 − L1)φ1

)
= −L1φ1

and hence may be chosen to satisfy q1 ⊥ span{ψ0, ψ1}. To find a closed form expression for
q1, notice that

L0 (xux) = 2uxxx = −L1ux.

Moreover, a direct calculation shows that the function uE satisfies L[u]uE = 0 and the
function

φ̃ = −{T,M}a,E
(
xux +

T

TE
uE

)
is T -periodic. In particular, L0φ̃ = −L1φ1 and φ̃ ⊥ span{ψ0, ψ1} and hence we may choose
q1 = φ̃. Note there are many other choices for q1 that are possible; our choice is made to
simplify the forthcoming calculations. Similarly, since ψ2 is at the bottom of the Jordan
chain of the null-space of L†0, we may choose q̃2 to satisfy the equation

L†0q̃2 = −L†1ψ2.

For q̃2, unlike the variation in φ1, we do not need a closed form expression for q̃2; the above
defining relation will be sufficient for our purposes.
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With the above choices, all the necessary inner products described in Lemmas 3.4 and
3.5 may be evaluated explicitly. Indeed, straightforward computations show that

M0 =

 0 0 0
0 0 1

2{T,M}a,E{T,M,P}a,E,c
0 0 0


M1 =

 TET ∗ 0
∗ 0 ∗

T (TE{T,M}E,c + Ta{T,M}a,E) ∗ 0


M2 =

 ∗ T{T,K}a,E ∗
∗ ∗ ∗
∗ T{T,M}E,c{T,K}a,E + T{T,M}a,E

TE
(Ta{T,K}a,E − T{T,M}a,E) ∗

 .

and

I0 =

 {T,M}a,E 0 0
0 −1

2{T,M}a,E{T,M,P}a,E,c 0
0 0 1

2{T,M}a,E{T,M,P}a,E,c


I1 =

 ∗ −{T,M}E,cT − {T,M}a,EM ∗
∗ ∗ ∗
∗ 2{T,M}a,E{K,T,M}a,E,c − {T,M}2E,cT − 2{T,M}E,c{T,M}a,EM − {T,M}2a,EP ∗

 .

We can thus explicitly compute the rescaled matrices M̂ε and Ĩε in terms of the underlying
solution u, which yields the following theorem.

Theorem 2. Let (a0, E0, c0) ∈ D and assume the matrices ∂(Mω,Pω,ω)
∂(u̇) and ∂(u̇)

∂(a,E,c) are

invertible at (a0, E0, c0). Then the linearized dispersion relation ∆̂(µ, κ) in (2.13) satisfies

det
(
εM̂ε − µ

〈
S(ε)−1Ṽ ∗ε , VεS(ε)

〉)
= C∆̂(µ, κ) +O(|µ|4 + |κ|4)

for some constant C 6= 0. That is, up to a constant the linearized dispersion relation for the
homogenized system (2.12) accurately describes the low-frequency behavior of the spectrum
of the Bloch-operator Lξ.

Proof. A straightforward computation using the above identities implies

det
(
εM̂ε − µ

〈
S(ε)−1Ṽ ∗ε , VεS(ε)

〉)
=
T 3{T,M}3a,E

2TE

(
{T,M}E,a + T 2

a − 2TcTE
)

+ C∆̂(µ, κ) +O(|µ|4 + |κ|4)

for some nonzero constant C = C(a,E, c). Moreover, using the identity

2Tc = PE = Ma = −
√

2
4

∮
Γ

u2 du

(E − V (u; a, c))3/2
,



4 CONCLUSIONS 18

which immediately follow from the integral formulas (2.3)-(2.5), along with the fact that
Ta = ME by (2.7), it follows that

T 2
a − 2TcTE = TaME − TEMa = {T,M}a,E = −{T,M}E,a

and hence

det
(
εM̂ε − µ

〈
S(ε)−1Ṽ ∗ε , VεS(ε)

〉)
= C∆̂(µ, κ) +O(|µ|4 + |κ|4)

as claimed.

Theorem 2 provides a rigorous verification at a linearized level of the Whitham mod-
ulation equations for the gKdV equations. While this has recently been established in
[JZ1], the important observation here is that the verification was independent of the restric-
tive Evans function techniques. Thus, the above computation can be used as a blueprint
for how to rigorously justify Whitham expansions in more complicated settings where the
Evans function framework is not available. As a consequence of our assumption that the
eigenvalues of Mε be distinct for 0 < |ε| � 1, it follows that there must exist a similarity
transformation between the matrix

∂ε

(
εM̂ε − µ

〈
S(ε)−1Ṽ ∗ε , VεS(ε)

〉) ∣∣
ε=0

and the matrix arising from the linearized Whitham averaged system (2.13). Thus, the
variations predicted by Whitham to control the long-wavelength stability of a periodic
traveling wave solution of the gKdV are indeed the variations needed at the level of the
linearized Bloch-expansion.

4 Conclusions

In this paper we have considered the spectral stability of a periodic traveling wave of the
gKdV equation to long-wavelength perturbations. Recently, this notion of stability has
been the focus of much work in the context of viscous systems of conservation laws [OZ1,
OZ3, OZ4, Se1, JZ4, JZ5] and nonlinear dispersive equations [BrJ, BrJK, J2, JZ]. While
much of this work has utilized the now familiar and powerful Evans function techniques,
our approach of using a direct Bloch-decomposition of the linearized operator serves to
provide an elementary method in the one-dimensional setting considered here as well as a
robust method which applies in the more complicated setting of multi-periodic structures.
As such, our hope is that the simple and straightforward analysis in this paper will be used
as a blueprint for how to justify the Whitham modulation equations (at a linearized level) in
settings which do not admit a readily computable Evans function. In future work, we hope
to apply this method to the long-wavelength stability of doubly periodic traveling waves of
viscous systems of conservation laws.

As a future direction of investigation, we note that Theorem 2 and the assumption that
the branches of spectrum bifurcating from the origin are distinct suggests a possibly more
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algorithmic approach to justifying (at a linearized level) the Whitham modulation equations
via the above Bloch-expansion methods which furthermore does not rely on comparing
the linearized dispersion relations as in Theorem 2; it should be possible to justify the
Whitham expansion by direct comparison of inner products and showing the mentioned
similarity directly. As a first step, we suggest beginning this line of investigation by studying
the gKdV equation as in the current paper and [JZ1] and expressing the full linearized
Whitham averaged system in terms of inner products. Demonstrating the desired similarity
in this way, while not completely necessary, could substantially simplify the amount of work
required to justify the linearized Whitham averaged equations by not requiring an initial
justification at the spectral level (a possibly daunting task in more general situations).

Finally, we wish to stress once more that the analysis presented in this paper justifies the
Whitham equations at a linearized level. In particular, the methods provide a method to
prove that by averaging and linearizing the Whitham modulation equations for the gKdV
equation accurately describes the spectrum of the linearized operator in a neighborhood
of the origin, i.e. correctly predicts the spectral stability of the underlying periodic wave
to long wavelength perturbations. A justification at the nonlinear level is well beyond the
scope of our analysis and presents a formidable and interesting open problem.
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