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NONLINEAR STABILITY OF VISCOUS ROLL WAVES*

MATHEW A. JOHNSONT, KEVIN ZUMBRUN', AND PASCAL NOBLE#}

Abstract. Extending results of Oh and Zumbrun and of Johnson and Zumbrun for parabolic
conservation laws, we show that spectral stability implies nonlinear stability for spatially periodic
viscous roll wave solutions of the one-dimensional St. Venant equations for shallow water flow down
an inclined ramp. The main new issues to be overcome are incomplete parabolicity and the noncon-
servative form of the equations, which lead to undifferentiated quadratic source terms that cannot be
handled using the estimates of the conservative case. The first is resolved by treating the equations
in the more favorable Lagrangian coordinates, for which one can obtain large-amplitude nonlinear
damping estimates similar to those carried out by Mascia and Zumbrun in the related shock wave
case, assuming only symmetrizability of the hyperbolic part. The second is resolved by the observa-
tion that, similarly as in the relaxation and detonation cases, sources occurring in nonconservative
components experience decay that is greater than expected, comparable to that experienced by a
differentiated source.
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1. Introduction. Roll waves are a well-known hydrodynamic instability occur-
ring in shallow water flow down an inclined ramp, generated by competition between
gravitational force and friction along the bottom. These can be modeled as periodic
traveling-wave solutions of the St. Venant equations for shallow water flow, which take
the form of hyperbolic or parabolic balance laws; see [4, 17, 18] for detailed discussions
of existence in the inviscid and viscous cases.

The spectral and linear stability of roll waves has been studied for the inviscid St.
Venant equations in [17] and the viscous St. Venant equations in [18]. However, up to
now, the relation between spectral, linearized, and nonlinear stability has remained
an outstanding open question. In this paper, extending recent results of [23, 8, 9]
in the related conservation law case, we settle this question by showing that spectral
implies linearized and nonlinear stability.

This opens the way to rigorous numerical and analytical exploration of stability
of roll waves and related phenomena via the associated eigenvalue ODE, a standard
and numerically and analytically well-conditioned problem. At the same time, it gives
a particularly interesting application of the techniques of [23, 8, 9]. In particular, roll
waves, by numerical and experimental observation, appear likely to be stable, at least
in some regimes. In the parabolic conservation law case, by contrast, periodic waves
so far appear typically to be unstable [20].
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1.1. Equations and assumptions. Consider the one-dimensional St. Venant
equations approximating shallow water flow on an inclined ramp:

ht + (hu)z = 0,

(1.1) ) ) )
(hu)y + (h*/2F + hu®), = h — u* + v(huy) .,

where h represents height of the fluid; u is the velocity average with respect to height;
F' is the Froude number, which here is the square of the ratio between speed of the
fluid and speed of gravity waves; v = Re™ ' is a nondimensional viscosity equal to
the inverse of the Reynolds number; the term u? models turbulent friction along the
bottom; and the coordinate x measures longitudinal distance along the ramp.

In Lagrangian coordinates, these appear as

Tt — Uy =0,

(1-2) ue + (2F) '), =1 — 7% + v(17 % Uy,
where 7 := h~! and 2 now denotes a Lagrangian marker rather than a physical
location. We will work with this form of the equations, as it is more convenient for
our analysis in several ways. (Indeed, for the large-amplitude damping estimates of
section 4.4, it appears to be essential; see Remark 10.)

Denoting U := (7,u), consider a spatially periodic traveling-wave solution

(1.3) U=U(x —ct)
of (1.2) of period X and wavespeed c satisfying the traveling-wave ODE

—cr’ —u' =0,

1.4
(14) —cu' + (2F) 72 =1 —7ru® + v(r %) .

Integrating the first equation of (1.4) and solving for u = u(7) := ¢—cr, where ¢ is
the resulting constant of integration, we obtain a second-order scalar profile equation
in 7 alone:

(1.5) A+ (2F) ') =1—1(q—er)? — e (v 27,

Note that nontrivial periodic solutions of speed ¢ = 0 do not exist in Lagrangian
coordinates, as this would imply u = ¢, and (1.5) would reduce to a scalar first-order
equation

(1.6) 7 =Fri(r¢® — 1),

which since it is scalar first-order has no nontrivial periodic solutions, even degenerate
ones (e.g., homoclinic or heteroclinic cycles) that might arise in the singular ¢ — 0
limit. Rather, there appears to be a Hopf bifurcation as ¢ approaches some minimum
speed for which periodics exist; see [18, section 4.1 and Figure 1, section 4.2.3].

It follows then that periodic solutions of (1.5) correspond to values (X, ¢, q,b) €
R5, where X, ¢, and ¢ denote period, speed, and constant of integration, and b =
(b1, b2) denotes the values of (7,7') at = 0, such that the values of (7,7/) at z = X
of the solution of (1.5) are equal to the initial values (b1, b2).

Following [29, 22, 23, 8, 9], we assume the following:

(H1) 7 > 0, so that all terms in (1.2) are CK+1 K > 3.
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(H2) The map H : R® — R? taking
(Xa Canb) = (TvT/)(Xa va;X) -b

is full rank at (X,¢,b), where (7,7')(-;-) is the solution operator of (1.5).
By the implicit function theorem, conditions (H1)-(H2) imply that the set of
periodic solutions in the vicinity of U form a smooth three-dimensional manifold

(1.7) {UP(x — a — ¢(B)t)}, with o € R, 3 € R2.

Remark 1. The transversality condition (H2) could be replaced by the more
general assumption that the set of periodic solutions in the vicinity of U form a
smooth three-dimensional manifold (1.7). However, it is readily seen in this context
that (H2) is then implied by the spectral stability condition (D3) of section 1.1.2;
that is, transversality is necessary for our notion of spectral, or Evans, stability. This
situation is reminiscent of that of the viscous shock case; see, for example, [36, section
1.2.3] or [15, 32].

Remark 2. Note that (1.2) is of 2 x 2 viscous relaxation type,

8 U S BOW = (7). a@) =1,
where ¢, = —2u7 < 0 for solutions u > 0 progressing down the ramp. Thus, constant

solutions are stable as long as the subcharacteristic condition ‘§| < |f;—%| is satisfied,
or F' < 4. When the subcharacteristic condition is violated, roll waves appear through
Hopf bifurcation as parameters are varied through the minimum speed ¢y, = \/%;
see Appendix C. For v = 0, violation of the subcharacteristic condition is associateod
with subshocks and the appearance of discontinuous roll waves observed by Dressler
[4]; see [7] for a related, more general discussion.

Remark 3. The limit v — 0 represents an interesting singular perturbation
problem in which the structure of the profile equations simplifies, decoupling into fast
and slow scalar components, and converging to inviscid Dressler waves [4, 17] in an
appropriate regime [18]. This would be an interesting setting in which to investigate
the associated spectral stability problem. Another interesting limit is Hopf bifurcation
from the constant solution occurring at minimum speed of existence [18], treated here
in Appendix C; see Remark 12.

1.1.1. Linearized equations. Making the change of variables x — x — ct to
co-moving coordinates, we convert (1.2) to

T — Ty — Uy = 0,

1.9
(1.9) g — cug + (2F) 1772, =1 — 7u® + v(17 Uy,

and we convert the traveling-wave solution to a stationary solution U = U(x) conve-
nient for stability analysis.
Writing (1.9) in abstract form,

(1.10) Ui+ f(U)e = (BU)Uz)x + g(U),
and linearizing (1.9) about U(-), we obtain

(1.11) vy = Lv = (0, B0y — 0, A+ C)v,
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where the coefficients

(1.12) -

B:=B(u) = <0 ur—2> , C=dg(U) = <—?¢2 —20u7')

are periodic functions of x. As the underlying solution U depends on x only, (1.11)
is clearly autonomous in time. By separation of variables, therefore, decomposing
solutions into the sum of solutions of the form v(x,t) = e*wv(x), where v satisfies the
eigenvalue equation (L — A)v = 0, or, equivalently, by taking the Laplace transform,
we may reduce the study of stability of U to the study of the spectral properties of
the linearized operator L.

As the coefficients of L are X-periodic, Floquet theory implies that its spectrum
is purely continuous. Moreover, its spectral properties may be conveniently analyzed
by Bloch decomposition, an analogue for periodic-coefficient operators of the Fourier
decomposition of a constant-coefficient operator, as we now describe.

1.1.2. Bloch decomposition and stability conditions. Following [5, 26, 27,
28], we define the family of operators

(1.13) Le = e Le™® = (0, 4+ i€) B(0y + i) — (0n + i) A+ C

operating on the class of L? periodic functions on [0, X]; the (L?) spectrum of L is
equal to the union of the spectra of all L¢ with & real with associated eigenfunctions

(1.14) w(x, &,\) = e%q(x, &, N),

where ¢, periodic, is an eigenfunction of L¢. By standard considerations [18],! the
spectra of L¢ consist of the union of countably many continuous surfaces A;(€).
Without loss of generality, taking X = 1, recall now the Bloch representation

(1.15) u(z) = (%) /7; eS¢, ) dE

of an L? function u, where 4(¢,z) := Y, e2™**4(¢ + 27k) are periodic functions of
period X =1, 4(-) denoting with slight abuse of notation the Fourier transform of u
in x. By Parseval’s identity, the Bloch transform u(x) — @(&, x) is an isometry in L

(1.16) lullz2 (@) = lall 2222y

where L%(z) is taken on [0,1] and L?*(§) on [—m,7]. Moreover, it diagonalizes the
periodic-coefficient operator L, yielding the inverse Bloch transform representation

(1.17) ety = (i) /_ﬂ el etio(€, x)de,

relating behavior of the linearized system to that of the diagonal operators L.
Following [9], we assume along with (H1)—(H2) the following strong spectral sta-
bility conditions:
(D1) o(Le) C {ReX < 0} for € # 0.

IFor example, the characterization [5] of spectra as the zero set of an associated Evans function.
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(D2) Rea(L¢) < —0|¢[%, 0 > 0, for £ € R and |¢] sufficiently small.

(D3') A = 0 is an eigenvalue of Lg of multiplicity 2.2

As shown in [18], (H1)-(H2) and (D1)-(D3’) imply that there exist 2 smooth
eigenvalues

(1.18) Aj(§) = —iaz& + o([€])

of L¢ bifurcating from A = 0 at { = 0; see Lemma 2.1 below.

Loosely following [9], we make the further nondegeneracy hypotheses:

(H3) The coefficients a; in (1.18) are distinct.

(H4) The eigenvalue 0 of Ly is nonsemisimple, i.e., dimker Ly = 1.
The coefficients a; may be seen to be the characteristics of an associated Whitham
averaged system,

M(B): + G(B)a

(1.19) QB): + (BB

= O’

= O’

linearized about the values of M, G, ¢, £ associated with the background wave u,
where M is the mean of 7 over one period and F' is the mean in the 7-coordinate of a
certain associated flux, c is the wave speed, and 2 is the frequency of nearby periodic
solutions, indexed as in (1.7) by B € R?; see [18, 22, 23].> System (1.19) formally
governs slowly modulated solutions,

(1.20) i(z,t) = PP (U(x, 1)) + O(e), e — 0,

presumed to describe large spatiotemporal behavior x, t > 1, where @”(-) as in (1.7)
parametrizes the set of nearby periodic solutions, Q = ¥, and ¢ = -0, /¥,.

Thus, (D1) implies weak hyperbolicity of the Whitham averaged system (1.19)
(reality of a;), while (H3) corresponds to strict hyperbolicity. Condition (H4) holds
generically and corresponds to the assumption that speed ¢ is nonstationary along the
manifold of nearby stationary solutions; see Lemma 2.1.* Condition (D2) corresponds
to “diffusivity” of the large-time (~ small frequency) behavior of the linearized system
and holds generically given (H1)—(H4), (D1), and (D3).5 Condition (D3') also holds
generically and can be verified by an Evans function computation as described in [17].
As discussed in [20, 29, 8, 9], conditions (D1)—(D3’) are conservation law analogues
of the spectral assumptions introduced by Schneider in the reaction-diffusion case
[26, 27, 28].

1.2. Main result.
THEOREM 1.1. Assuming (H1)-(H4) and (D1)-(D3'), let U = (7, 4) be a traveling-
wave solution (1.3) of (1.2) satisfying the derivative condition

(1.21) vt < Fh

2The zero eigenspace of Lg, corresponding to variations along the three-dimensional manifold of
periodic solutions in directions for which period does not change [29, 9], is at least two-dimensional
by linearized existence theory and (H2).

3Here, we follow the formalism and notation of [22, 23].

4The case that (H4) is violated may be treated as in [8].

5This amounts to nonvanishing of bj in the Taylor series expansion \;(§) = —ia;& — bj§2 guar-
anteed by Lemma 2.1 given (H1)—(H4), (D1), and (D3').



582 M. A. JOHNSON, K. ZUMBRUN, AND P. NOBLE
Then, for some C > 0 and 1 € W5 (z,t), where K > 3 is as in (H1),

1T = T(- = — et)| 1o (t) < CL+ )2 CYPNT = Tl 1 1=,
: T —U(- = — ct)|| gx (t) < “H|T — Ul p1nmx |e=os
(1.22) 1T = U(- = — et) || gx (£) < C(L+1)
(e, o) lwresro < CL+ )" 2YDNT — T panprx o

and
(1.23) 1O = U = ct)lleee(t), ()| < CNU = Ullpinps li=o

for all t > 0, p > 2, for solutions U of (1.2) with ||[U — U||p1ngx |i—o sufficiently
small. In particular, U is nonlinearly bounded L' N HX — L> stable.

Theorem 1.1 asserts not only bounded L' N HX — L stability, a very weak
notion of stability, but also asymptotic convergence of U to the modulated wave

U — (x,1)).

Remark 4. With further effort, it may be shown that the results of Theorem 1.1
extend to all 1 < p < co using the pointwise techniques of [21]; see [8, 9].

Remark 5. The derivative condition (1.21) is effectively an upper bound on the
amplitude of the periodic wave; see Remark 9. As discussed in Remark 10, this is
precisely the condition that the first-order part of the linearized equations (1.11) be
symmetric hyperbolic (i.e., that A in (1.12) be symmetrizable) and reflects a subtle
competition between hyperbolic and parabolic effects. (The first-order part of the
inviscid equations is always symmetric-hyperbolic, corresponding to the equations of
isentropic gas dynamics with vy-law gas.) It is satisfied when either wave amplitude or
viscosity coefficient v is sufficiently small. It is not clear whether this condition may
be relaxed.

We note that condition (1.21) is satisfied for all roll waves computed numerically
in [18]. In the Eulerian coordinates considered in [18], (1.21) translates to h,/h3 <
(2¢LagrangianVF) 7', Examining Figure 1 of [18], a phase portrait in (h, k') for F' = 6,
v = 0.1, and Cragrangian = 1,° we see that all periodic orbits appear to satisfy h’ <
0.5, h > 1.3 (worst case at bounding homoclinic), so that h'/h® < 0.228, whereas
(20Lagmngi,muF)*1 Z 0.8333. In Lagrangian coordinates, (1.21) is equivalent to the
easier-to-verify condition

(1.24) Tp < (2evF) 7

which is readily checked within the phase portrait (7,7,) of traveling-wave ODE
(1.5).

It is straightforward using the bounds of Corollary 3.4 to show for “zero-mass,”
or derivative, initial perturbations that nonlinear decay rates (1.22)-(1.23) improve
by a factor of (1+#)~'/2 to the rates seen in the reaction-diffusion case [26, 10] for
general (undifferentiated) localized perturbations. In particular, the perturbed wave
U then decays asymptotically in L> to the background wave U with Gaussian rate
(1 +t)~/2 as in the reaction-diffusion case. Likewise, under an unlocalized initial
perturbation, or, equivalently, the integral of a localized perturbation, the difference
between U and U may be expected to blow up at rate (1 + t)'/2—this is indeed the
linearized behavior—and, barring special nonlinear structure, there seems no reason

4

SHere, we are using CLagrangian = (mass flux through (z — cguteriant)) = h(CEulerian —©) together
with the parametrization §:= h(cgyierian — ) = 1 of [18].
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why the difference between U and the modulation U(- — ¥) should not blow up as
well: at best it remains bounded. In the reaction-diffusion case, for comparison,
results announced in [25] assert that U remains close to U even under unlocalized
perturbations and approaches the modulated wave at rate (1 + t)’l/ 2in L>°. That is,
the behavior in the conservation (balance) law case compared to that in the reaction-
diffusion case is, roughly speaking, shifted by one derivative.”

This reflects a fundamental difference between modulational behavior in the
present conservation (or balance) law setting from that of the reaction-diffusion case.
Namely, in the reaction-diffusion case, the Whitham averaged system reduces to a
single equation, 0;(Q2) 4+ 0,(€2c) = 0, or, equivalently,

(1.25) U, + (V) 0, =0,

where ) := ¥, denotes frequency and ¢ := —\%’—; the wave speed, and c and () are
related by the linearized dispersion relation along the family of periodic orbits (in the
case considered by Schneider [26], ¢ = 0). On the other hand, the Whitham averaged
equations (1.19) in the present case are a genuine 2 x 2 first-order hyperbolic system®
in ¥, and wave speed ¢, ¢ now considered as an independent parameter; that is, they
describe modulation of the perturbed wave in frequency ¥, and speed ¢, with phase
shift ¥ determined indirectly by integration of W¥,.

Assuming heuristically (as justified at the linearized, spectral level by the Bloch
analysis of section 2) that modulational behavior is governed by a second-order regu-
larization of the first-order Whitham averaged system, we have the standard picture
of behavior under localized perturbation as consisting of modulations in (¥, ¢) given
by a pair of approximate Gaussians propagating outward with Whitham characteris-
tic speeds a1 and as, hence an associated, much larger modulation in ¥ determined
by integration in the ¥, component, given by a sum of approximate error functions
propagating with the same speeds.

Indeed, this is exactly the description given in (3.27) of the principal part of the
kernel e(x,t;y) determining ¥ through (4.23). Likewise, the principal part of the
Green function of the linearized equations about U is U’(z)e(x,t;y), showing that
linearized behavior to lowest order indeed consists of a translation, or multiple of
U'(x), with amplitude

() = / (. ) (T (4,0) — Ty, 0))dy;

see the description of the Green function in Corollary 3.4.

This picture of modulational behavior as “filtering” by integration along a certain
direction of the hyperbolic—parabolic system derived by Whitham averaging seems
quite interesting at a phenomenological level and a genuinely novel aspect of the
conservation (balance) law case. In particular, the ¥, component direction along
which the integration is performed is in general independent of either characteristic
mode, so that the resulting behavior is essentially different from that exemplified by
(1.25) of a single scalar equation as in the reaction-diffusion case.

7At a purely technical level, this can be seen by the appearance of a Jordan block in the zero
eigenspace of Lo, introducing factor £ =1 in the description of low-frequency behavior (Lemma 2.1).
Recall that a factor £ corresponds roughly to differentiation in the Bloch representation, through its
relation to the Fourier transform. In the reaction-diffusion case, the zero eigenspace of Lo is simple,
and no such factor appears.

8In general, the dimension of the Whitham averaged system is equal to the dimension of the
manifold of nearby periodic solutions, modulo translations [9].
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1.3. Discussion and open problems. The extension from the parabolic con-
servation law to the present case involves a number of new technical issues associated
with lack of parabolicity and nonconservative form. We overcome these difficulties by
combining the arguments of [8, 9, 18] with those of [16, 32, 30] (real viscosity) and
[13] and [12, 31] (relaxation and combustion systems, both involving nonconservative
terms).

An interesting open problem is the rigorous justification of spectral stability of
roll waves approaching the inviscid case in the singular zero viscosity limit, extending
results of [18]. We hope to carry this out in future work. For related asymptotic
analysis, see the study in [33] of the inviscid limit for detonations.

Another interesting open problem is the numerical investigation of spectral stabil-
ity of large-amplitude roll waves. In particular, it is an interesting question whether
violation of the apparently technical “amplitude condition” (1.21) corresponds to ac-
tual physical phenomena/instability. This is not inconceivable, as (1.21) is needed in
our argument not only for nonlinear iteration, but also for high-frequency linearized
bounds. As this is the condition that the first-order part of the equations be symmetric
hyperbolic, it may well have such significance—however, this is not yet clear.

It is straightforward to extend our results to the two-dimensional small-amplitude
case by working in Eulerian coordinates and substituting for the present large-ampli-
tude damping estimate the simpler small-amplitude version of [14]; see [8, 9] for the
multidimensional analysis of periodic waves. However, there is some evidence that roll
waves develop transverse instabilities in multidimensions [19]. If so, this suggests the
question of whether such instability might be connected with bifurcation to multiply
periodic waves. The extension of our stability analysis to the multiply periodic case,
as suggested in [8, 9], is another very interesting open problem.

2. Spectral preparation. We begin by a careful study of the Bloch perturba-
tion expansion near £ = 0.

LEMMA 2.1. Assuming (H1)-(H4), (D1), and (D3'), the eigenvalues \;(€) of L
are analytic functions and the Jordan structure of the zero eigenspace of Lo consists
of a one-dimensional kernel and a single Jordan chain of height 2, where the left
kernel of Lg is spanned by the constant function f = (1,0)T, and @ spans the right
eigendirection lying at the base of the Jordan chain. Moreover, for |&| sufficiently
small, there exist right and left eigenfunctions ¢;(§,-) and §;(&,-) of Le associated
with \; of the forms ¢; = S\r_y Bixvx and G; = S o_y Bjx0r, where {vj}5=, and
{v; }5:1 are dual bases of the total eigenspace of L¢ associated with sufficiently small
eigenvalues, analytic in €, with 92(0) constant and v1(0) = @(-); €61, Bj2 and
£Bj1, Bj2 are analytic in &; and (G, qr) = 5;’?.

Remark 6. Notice that the results of Lemma 2.1 are somewhat unexpected since,
in general, eigenvalues bifurcating from a nontrivial Jordan block typically do so in
a nonanalytic fashion, rather being expressed in a Puiseux series in fractional powers
of £9 The fact that analyticity prevails in our situation is a consequence of the
very special structure of the left and right generalized null-spaces of the unperturbed
operator Lg, and the special forms of the equations considered.

9This is, however, consistent with the picture of behavior as being approximately governed by a
first-order Whitham averaged system with eigenvalue perturbation expansions agreeing to first-order
with the associated linearized homogeneous dispersion relation [18, 22, 23].
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Proof. Recall that L¢ has a spectrum consisting of isolated eigenvalues of finite
multiplicity [18, 5]. Expanding

(2.1) Le = Lo + €LY — €212,
where, by (1.13),
(2.2) Lo=0,B0, —0,A+C, L'=(Bd,+0,B—A), L*=B,

consider the spectral perturbation problem in £ about the eigenvalue A = 0 of Ly.

Because 0 is an isolated eigenvalue of Ly, the associated total right and left
eigenprojections Py and Py perturb analytically in &, giving projection P: and P [11].
These yield in standard fashion (for example, by projecting appropriately chosen fixed
subspaces) locally analytic right and left bases {v;} and {7;} of the associated total
eigenspaces given by the range of P, ]55.

Defining V' = (v1,v2) and V = (01,02)*, * denoting adjoint, we may convert
the infinite-dimensional perturbation problem (2.1) into a 2 X 2 matrix perturbation
problem

(2.3) Mg = Mo +iEMy — €2 My + O([€]?),

where M, := <\~/5*, LeVe) and (-, ) denotes the standard L?(x) inner product on the
finite interval [0, X]. That is, the eigenvalues \;(§) lying near 0 of L¢ are the eigen-
values of M, and the associated right and left eigenfunctions of L, are

(24) fj = ij and fj = szV*,

where w; and w; are the associated right and left eigenvectors of M.

By assumption, A = 0 is a nonsemisimple eigenvalue of Ly, so that M is nilpotent
but nonzero, possessing a nontrivial associated Jordan chain. Moreover, using the fact
that ((1,0)T,C) = 0, where, again, (-,) represents the L?(z) inner product over the
finite domain [0, X], the function f = (1,0)7 by direct computation lies in the kernel of
L§ = (0;B*0, + A*0; + C*), and we have that the two-dimensional zero eigenspace
of Ly consists precisely of a one-dimensional kernel and a single Jordan chain of height
two. Moreover, by translation-invariance (differentiate in x the profile equation (1.5)),
we have Lou’ = 0, so that @’ lies in the right kernel of L.

Now, recall by assumption (H2) that H : R> — R2?, taking (X,c,q,b) —
(7,7)(X, ¢, b; X) — b is full rank at (X,¢,b), where (7,7')(-;-) is the solution oper-
ator of (1.5). The fact that ker Ly is one-dimensional implies that the restriction H
taking (b, q) — u(X;b,c,q) — b for fixed (X,c) is also full rank; i.e., H is full rank
with respect to the specific parameters (X, c). Applying the implicit function the-
orem and counting dimensions, we find that the set of periodic solutions, i.e., the
inverse image of zero under map H local to @, is a smooth three-dimensional man-
ifold {@?(x — a — ¢(B)t)}, with a € R, 3 € R% Moreover, two dimensions may be
parametrized by (X, ¢), or, without loss of generality, 5 = (X, ¢).

Fixing X and varying ¢, we find by differentiation of (1.5) that f, := —0,U
satisfies the generalized eigenfunction equation

Lof. =U".

Thus, U’ spans the eigendirection lying at the base of the Jordan chain, with the
generalized zero-eigenfunction of Ly corresponding to variations in speed along the
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manifold of periodic solutions about U. Without loss of generality, therefore, we may
take U2 to be constant at £ =0, and v; = U’ at £ = 0.
Noting as in [8] the fact that, by (1.12),

25) AU, = f(@), — (0:B(0))U, = 0, (f(@)y — B(U)U,) + B()0y iy
' = g(U) + B(0)0,,,
and so by eog =0, 0,e2 = 0, we have
(ea, L'U") = (€2, (0. B + Bd, — A)U') = (e2,0,BU’') =0

for e5 := (0, 1), where (-, -) denotes the L?(z) inner product on the interval z € [0, X],
we find under this normalization that (2.3) has the special structure

(2.6) My = <8 é) M, = <S :)

Now, rescaling (2.3) as

(2.7) Mg := (i€) 7' S(&)MeS() 7,
where
_ (i€ 0
29 5= (%),
we obtain
(2.9) M = My + i€My + O(&%),

where M; like the original M; are constant and the eigenvalues m;(€) of M are
(i)~ 12, (9). V

As the eigenvalues m; of M are continuous, the eigenvalues \;(£) = iém; are dif-
ferentiable at £ = 0 as asserted in the introduction. Moreover, by (H3), the eigenvalues
Aj(0) of My are distinct, and so they perturb analytically in &, as do the associated
right and left eigenvectors z; and Z;. Undoing the rescaling (2.7) and recalling (2.4),

we obtain the result. 0

3. Linearized stability estimates. By standard spectral perturbation theory
[11], the total eigenprojection P(&) onto the eigenspace of L associated with the
eigenvalues A;(§), j = 1,2, described in the previous section is well defined and
analytic in & for { sufficiently small, since these (by discreteness of the spectra of L)
are separated at £ = 0 from the rest of the spectrum of Ly. By (D2), there exists an
£ > 0 such that R\; (&) < —0|¢|? for 0 < |¢| < 2. With this choice of ¢, we introduce
a smooth cutoff function ¢(¢) that is identically one for || < e and identically zero
for || > 2¢, e > 0 sufficiently small; we split the solution operator S(¢) := e into a
low-frequency part,

(3.1) ST (tyug = (%) /_ " (€ P(€)e e ao (€, ),

and the associated high-frequency part,

(3.2) ST (1)U = (%) /_ﬂ ¢i€ (I — pP(€))eletUp(€, x)de.
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Our strategy is to treat the high- and low-frequency operators separately since,
as is standard, the low-frequency analysis is considerably more complicated than the
corresponding high-frequency analysis. That being said, we begin by deriving bounds
on the solution operator at high frequency.

3.1. High-frequency bounds. By boundedness of the resolvent on compact
subdomains of the resolvent set, equivalence (as the zero-set of an associated Evans
function [18, 20]) of H! and L? spectrum, assumption (D2), and the high-frequency
estimates of Lemma B.1, we have for |£| bounded away from zero and waves satisfying
the amplitude condition (1.21) that the resolvent (A — L¢)™! is uniformly bounded
from H! — H' for R\ = —n < 0 < 0, whence, by Priiss’ theorem [24], [leL<! f|| ;1 <
Ce= || f -

For |¢] sufficiently small, on the other hand, ¢ =1, and I — ¢(§) P =1—- P =Q,
where @) is the eigenprojection of L¢ associated with eigenvalues complementary to
A; (&), which by spectral separation of A; () from the remaining spectra of L¢ have real
parts strictly less than zero. Applying Priiss’ theorem to the restriction of L¢ to the
Hilbert space given by the range of @, we find, likewise, that ||eZ¢! (I — ¢(€))f|z =
le"* Q fllar < Ce™ | fll o

Combining these observations, we have the exponential decay bound

le®<" (1 = oP(€)) fllzrr po.x)) < Ce™ " If 1 (po.x)

for > 0 as in (D2) and C > 0, from which it follows that

(3.3) ™" (I — pP(€))0% fll (o, x)) < Ce™ || fll v (o, x1)

for 0 <1 < K (K as in (H1)). Together with (1.16), these give immediately the
following estimates.

PROPOSITION 3.1 (see [23]). Under assumptions (H1)-(H4), (D1)-(D2), and
assuming the amplitude condition (1.21) holds, there exist constants 8, C > 0, such
that for allt > 0,2 <p <o0,0<1<2,0<m <2, we have the high-frequency
estimates

IS0 f 2@y < Ce™ [ f e ),

(3.4) - )
IS (007 f | Lo (@) < Ce™ || fllrm+2(a)-

Proof. For m,l = 0, the first inequalities follow immediately by (1.16) and (3.3).
The second follows for p = co by Sobolev embedding. The result for general 2 < p <
oo then follows by LP interpolation. A similar argument applies for 1 < I,m < 2 by
higher-derivative versions of (3.3), which follow in exactly the same way. d

3.2. Low-frequency bounds. As noted above, analysis of the solution operator
at low frequency is considerably more complicated than the high-frequency bounds
outlined above. To aid in our analysis, we introduce the Green kernel

(3.5) G (. t1y) = ST ()3, (x)
associated with S?, and the corresponding kernel
(3.6) [Gé(z,t59)] := G(E)P(E)e™< 3, (2)]

appearing within the Bloch representation of G!, where the brackets on [G¢] and [4,]
denote the periodic extensions of these functions onto the whole line. Then we have
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the following descriptions of G', [G{], deriving from the spectral expansion (1.18) of
L¢ near £ = 0.
PROPOSITION 3.2 (see [23]). Under assumptions (H1)—(H4) and (D1)—(D3'),

(GE(z, t;y)] ZeA 15 (6, 2)3; (€, )"
Jj=1

(7 Glaty) = (%) [ <Gk e

= (3) /Reif'“”‘% i 1Otg,(6, )5 (6, v) " de.

where * denotes matriz adjoint, or complex conjugate transpose, and g;(&,-) and
g; (&, ) are right and left eigenfunctions of L¢ associated with eigenvalues A;(§) defined
in (1.18), normalized so that (G;,q;) = 1.

Proof. Relation (3.7); is immediate from the spectral decomposition for CV semi-
groups at eigenvalues of finite multiplicity, and the fact that A; are distinct for || > 0
sufficiently small, by (H3). Substituting (3.5) into (3.1) and computing

(38) 52\1(65 33) _ Z eQﬂ'ikmg‘;(f + 271']{361) _ Ze2ﬂikze—i§'y—2ﬂ'iky — e—if'y[dy(x)]’
k k

where the second and third equalities follow from the fact that the Fourier transform
of either the continuous or discrete delta-function is unity, we obtain

G/(ati) = (57) [ e oP@ete'd, 6. )de

1 T
_ (= i€-(z—y) Let
= (55) [ e top@etis, w)as
yielding (3.7)2 by (3.6) and the fact that ¢ is supported on [—,7]. O

We now state our main result for this section, which uses the spectral represen-
tation of G! and [Gé] described in Proposition 3.2 to decompose the low-frequency
Green kernel into a leading order piece (corresponding to translational modulation)
plus a faster decaying residual. Underlying this decomposition is the fundamental
relation

(3.9) Gz, t;y) 271- / /Rd 1 e (G (21, 1 1)) dE,

which serves as the crux of the low-frequency analysis both here and in [21, §].
PROPOSITION 3.3.  Under assumptions (H1)-(H4) and (D1)-(D3’), the low-
frequency Green function G'(x,t;y) of (3.5) decomposes as GT = E + G,

(3.10) E=U'(x)e(z,t;y),
where, for some C' >0 and all t > 0,

=~ _ 11
sup [|GT (-, t,39) || Lo(ay < C(1+ )20 7%),
Yy

~ ~ _ 1l _1y_1
311) sw G (il supI0;G (b5 )l oy < C(L+ 1) 2073,
Y Y

=

= Ll 1y_
sup |1 (-, t,39)(0, )7 || 1oy < C(1 +1)"207%)
Yy
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forp>2,1<r<2
, N
(3.12) Sup 1828100 e(-,t,;y) || Loy < C(L+1) 27— —2

forp>2,0<jl, j+I<K+1,1<r<2, and

(3.13) sup |30 (, £, 1 y)l| Loy < C(L+ 1)~ 30-$-5
Yy

for 0 <41, j+1 < K+ 1, provided that p > 2 and 7 +1 > 1 or p = co. Moreover,
e(z,t;y) =0 fort <1.

Remark 7. The crucial new observation in the nonconservative case treated here
is (3.11),, which asserts that sources entering in the nonconservative second coordi-
nate of the linearized equations experience decay equivalent to that of a differentiated
source entering in the first coordinate. This is what allows us to treat nondivergence-
form source terms arising in the second equation of the eventual perturbation equa-
tions.

Proof. Recalling (3.7) and Lemma 2.1, we have

2
G (a.ti) = (37) [ <00 3o Mgy e e
=1
(3.14) 1 J '
- (%)/ * kZ N OB o (€, 2) Byt (€, y) dE;

the fact that 8;1 = O(£7!) suggests the k = 1 terms (corresponding to translation)
dominate the low-frequency Green kernel. With this motivation, we define

Gy fntn) = (g) [EaO 3 O B e
R

™

so that
G(xty —-U'( )(xty)

(3.16) / &) > MO B (€, 2)Tu (€, y) de
' G kALl

( S0 3 MO8 B (n.0) = U)o
75l

where, by analyticity of vi, v1(€,2) — U'(x) = O(|¢|), and so, by Lemma 2.1,

(3.17) BiaBia (vi(&2) = U'@) (e, )" = O(1)
and
(3.18) ﬁj72Bj,lU2(§a )0 (§,y)" = O(1).

Note further that # = (1,0)7 unless I = 1, in which case 5;; = O(|¢|) by Lemma 2.1;
hence

(3.19) 0y (BiaBra (n1(6,0) = U'(@)) (&, v)*) = O],



590 M. A. JOHNSON, K. ZUMBRUN, AND P. NOBLE

(3.20) (81183 (w16 2) — U'(@) (€. 9)") (0, 1)T = O(le]).
and

(3.21) 0, (B2B5.003(€, ) (E,)") = O(I€)),

(3.22) (B2Bjav(& 27 (€ )" ) (0,1)T = O(le]):

From representation (3.16), bounds (3.17)—(3.18), and R\; (£) < —0|¢|?, we obtain
by the triangle inequality

(3.23) |G (1)l (e) = G = T'e]| Lo (ay) < Clle S Lae) < C(141) 2.

Derivative bounds follow similarly, since z-derivatives falling on v, are harmless,
whereas, by (3.19)-(3.21), y- or t-derivatives falling on @;; or on €* =% introduce
a factor of |¢[, improving the decay rate by a factor of (1 +t)~1/2. (Note that |¢] is
bounded because of the cutoff function ¢, so there is no singularity at ¢ = 0.)

To obtain the corresponding bounds for p = 2, we note that (3.14) may be viewed
itself as a Bloch decomposition with respect to variable z := x — y, with y appearing
as a parameter. Recalling (1.16), we may thus estimate
(3.24)

Sup”Gl(, t; y) - Ulé(v t; y)||L2(w)
Yy

<C Z Sup||¢(f)6’)\j(§)tvk(',Zl)f’l*(',y)f’l(',y)*||L2(§;L2(zle[o,X]))

Gk#1,L Y
A () — U (@) - .
+OzsupHgb(g)eky(f)t(u)w(.’y)
gl Y N L2(&;L2(21€[0,X]))
p— 2 ~ 3
<C Y suplle€)e | e Sgp||vk(~,21)||L2<o,x>||vz(-,y) [ Lo (0,%)
gk#1,1 Y

o1(-, ) ||L°°(O,X)
L2(0,X)

on (&, ) —U'(x))

C R ‘
+ O sup o€ oo sup | (22

Jl

<C(1L+1)71,

where we have used in a crucial way the boundedness of #; in L>,'° and also the
boundedness of
(vn(ga {E) - U/(x))
€

in L?, where r € (0,¢). Derivative bounds follow similarly as above, noting that y-
or t-derivatives introduce a factor &, while x-derivatives are harmless, to obtain an

~ Ocvp (1)

10T his is clear for € = 0, since v; are linear combinations of genuine and generalized eigenfunctions,
which are solutions of the homogeneous or inhomogeneous eigenvalue ODE. More generally, note that
the resolvent of L¢ —+ gains one derivative, and hence the total eigenprojection, as a contour integral
of the resolvent, does too; now, use the one-dimensional Sobolev inequality for periodic boundary
conditions to bound the L*° difference from the mean by the (bounded) H' norm, then bound the
mean by the L' norm, which is controlled by the L? norm.
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additional factor of (1 + t)~'/2 decay. Finally, bounds for 2 < p < oo follow by L?
interpolation.
Now, defining

(3.25) e(z, t;y) = x(H)eé(z, t;y),

where € is defined in (3.15) and x is a smooth cutoff function such that x(¢) =1 for
t>2and x(t) =0 for t < 1, and setting G := G — U'(z)e(w, t;y), we readily obtain
the estimates (3.11) by combining the above estimates on G! — U& with bound (3.4)
on G,

Finally, recalling, by Lemma 2.1, that ©; = const for [ # 1 while Bj,l = 0(|¢]), we
have

0, (83183006, 9)") = oll€])-

Bounds (3.12) thus follow from (3.15) by the argument used to prove (3.11), together
with the observation that a- or t-derivatives introduce factors of £&. Bounds (3.13)
follow similarly for j + 1 > 1, in which case the integrand on the right-hand side of
(3.15) (now differentiated in = and/or t) is Lebesgue integrable.

In the critical case j =1 = 0, taking ¢t without loss of generality > 1, expanding

Aj(€) = —iaj — bie? + O(£%),
and setting \(¢) := —ifa; — b;€2, we may write &(x, t;y) in (3.15) as

(%)/Zﬁij(O)ng(o)@z(oay)*eif'(%y)ﬁfle;\j(g)tdf
B

(3.26) = (%)P.V./RZBj,l(O)ng(O)fm(O,y)*eié'(wfy)gfle&'(é)tdg
J

. - 1 ‘ ;
= 81(0)8;,2(0)52(0, )" (%)P.v. / et e lei @t
- R
J
where 3;1(0) := limg_,0(£8;,1(€)), and the above series is convergent by the alternat-
ing series test, plus a negligible error term

(i)P.v./eif“—y)¢(§)0(e—9lf|2t)dg
27 R

for which the integrand is Lebesgue integrable and hence, by the previous argument,
obeys the bounds for j +1 = 1. (Note that the integral on the left-hand side of (3.26)
is absolutely convergent by &1 (e"1&¢ — ¢=1928t) ~ |q; — aylt, becoming conditionally
convergent only when the integrand is split into different eigenmodes.)

By (D2), we have a; real and Rb; > 0. Moreover, the operator L, since it is
real-valued, has a spectrum with complex conjugate symmetry; hence b; is real as
well. Observing that (& )P.V. [, e’ (@=¥)¢-1eX(9d¢ is an antiderivative in  of the

1 ef(mfyfajt)2/4b]~t

inverse Fourier transform (E) fR e (@=y) i (Ot ge = BV = a Gaussian, we
mb;

find that the principal part (3.26) is a sum of error functions

2
. T—y—a;t .
(3.27) ;cj errfn(ilt ,t)vg(O,y),

/b,
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hence bounded in L™ as claimed, where a; denotes the characteristic speeds of the
Whitham averaged system and (on further inspection) » - ¢; = 0. This verifies bound
(3.13) in the final case j = [ = 0, completing the proof. d

Remark 8. See [21, proof of Proposition 1.5] for an essentially equivalent estimate

from the inverse Laplace transform point of view of the critical £~! contribution
(3.26).

3.3. Final linearized bounds.
COROLLARY 3.4. Under assumptions (H1)-(H4), (D1)-(D3"), the Green function
G(z,t;y) of (1.11) decomposes as G = E + G,

(3.28) E=U'(z)e(z,t;y),
where, for some C' >0, allt > 0,1 <¢g<2<p<oo, 04kl j+I<K+1,
1<r <2,

+oo _
H/ G(z,t;y) f(y)dy < O(1+ ) 3Va YD £ arpn,
—oo Lr(x)

+oo 5
H/ ar G, t;y) f(y)dy <O+ t) 2V YD=5 | | Lo s,
—oo Lr(x)

+o0o N
V 0rG(z, t;y) f(y)dy <O+ t) 2VYD=3| £l Lan grorsa,
—oo Lr(x)

(3.29)

Jroo jod 1 1
H/ Gz, t;9)(0,1)T f(y)dy <C(A+)2 WP f]| Lo,
—oo Lr()

+oo ) J
H J A L I e s P

Lr

too (11 ey G
\ [T aotoe s < v inem gy,
—o0 Lp

(3.30)

G+

[5)
= llza

+oo
H/ 1 oFe(x, t;9)(0, )T fly)dy|| < (1+ t)—%(l/q—l/p)—
oo o

Moreover, e(x,t;y) =0 fort < 1.
Proof. (Case ¢ =1.) From (3.11) and the triangle inequality we obtain

and similarly for y- and ¢-derivative estimates, and products with (0,1)7, which, to-
gether with (3.4), yield (3.29). Bounds (3.30) follow similarly by the triangle inequality
and (3.12)—(3.13).

(Case ¢ =2.) From (3.17)—(3.18) and analyticity of v, ¥;, we have boundedness
from L2([0, X]) — L?([0, X]) of the projection-type operators

(3:31) 1= BinBra (vn(€2) = 0'(@) ) 31, )
and

(3.32) f = BixBiaon(& ) (@, f) for k#1,

/ G (.t 9) f () dy
R

= / sup |G (- t:9)l| o | £ (y)ldy < C(L+6)" 2P £ 1,
Lr(x) R ¥y
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uniformly with respect to &, from which we obtain by (3.16), (3.25), and (1.16) the
bound

<Ol fllz2)

L2(x)

(3.33) H / :o & (e, :9) £ (y)dy

for all ¢ > 0, yielding, together with (3.4), the result (3.29) for p = 2, r = 1. Similarly,

by boundedness of ¢, v;, U’ in all LP[0, X], we have
€3O BrnBia (va6s2) = U'@) @, D < Ce MY (e, llpage,

Hexj(é)tﬁj7kﬁ~j,wk(§a58)(% f>HLm(w) < Ce | fie, Mrz@) for k#1,

Leoo(z)

C, 6 > 0, yielding by definitions (3.16), (3.25) the bound

+oo
H 3 G (z,t;y) f(y)dy

L(x) : (%) /_,, CH©)e™ " F(&, ) 2wy de
(3.34)

<o | - Nlen

L2(¢)
a4
SO+ 4 fllz2qo,x))

hence giving the result for p = co, 7 = 0. The result for » = 0 and general 2 < p < oo
then follows by LP interpolation between p = 2 and p = oco. Derivative bounds
1 <r < 2 follow by similar arguments, using (3.19)—(3.21), as do bounds for products
with (0,1)7. Bounds (3.30) follow similarly.

(Case 1 < g < 2.) By Riesz—Thorin interpolation between the cases ¢ = 1 and
q = 2, we obtain the bounds asserted in the general case 1 < ¢ < 2,2 <p < 0. a

Note the close analogy between the bounds of Corollary 3.4 and those obtained
in [15, 13] for the viscous or relaxation shock wave case.

4. Nonlinear stability. With the bounds of Corollary 3.4, nonlinear stability
follows by a combination of the argument of [8, 9] and modifications introduced in
the shock wave case to treat partial parabolicity and potential loss of derivatives in
the nonlinear iteration scheme [32, 34].

4.1. Nonlinear perturbation equations. Given a solution U(z,t) of (1.2),
define the nonlinear perturbation variable

(4.1) v=U—-U=U(z+¢(x,t),t) — U(z),
where
(4.2) Ulz,t) = Uz 4 (z,t),t)

and ¢ : R x R — R is to be chosen later. ~
LEMMA 4.1. For v, U as in (4.1), (4.2), and |U| bounded,

(4.3) U+ f(U)s = (B(U)Uz)z — 9(U) = (0 — L) U'(x)3p(x,t) + P + 9. R + 8,5,
where

(4.4) P = (9(0) = 9(0)) e = (0, )7 O(Jo]l ),
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(45)  Rimvbit BON: + o) 32— (BO) - BO)) Ut — BO)ot
and
(4.6) S = —vi)y.

Proof. By the definition of U in (4.2) we have by a straightforward computation
Ut(xv t) = Uw(x + %/’(ffa t)a t)¢t($7 t) + Ut(x + dja t)a
FU @, )e = df (U (x + (1), ) U (z + 9, 1) - (1 + o (1)),
Up(z,t) = Up(x + (x, 1), 1) - (1 + thp (a2, 1)).
By U; + df (U)U, — (B(U)U,), — g(U) = 0, it follows that
Us+ f(U)e = (BU)Ux)s = g(U) = Uptir + df (0)Ustbe — (BU)Ua)stoa = (BU)Uaton)s
where it is understood that derivatives of U appearing on the right-hand side are
evaluated at (x+(x,t),t). Moreover, by another direct calculation, using L(U’(x)) =
0, we have
(0 = L) U'(2)¢ = Ustpr — Uty + df (U)Usthz — (B(U)Us )t — (BU) Vst )w
= dejt - Utww + Q(U)% - (B(U)waw)w
Subtracting, and using the facts that, by differentiation of (U + v)(x,t) = U(zx +
w(xﬂ t)? t)’

(4.8) Up+ve = Un(14+v2),  Ui4v, = Us + Uptly,

so that

@9) Ty Uy —vs = — (st 02) =22 Oom U= vy = — (O + 0)—2—
1+, 1+,

we obtain
Ui+ f(U)e — (BU)Uy)z — g(U) = (8 — L)U"(2)9) + 02ty — v1t)a

+ (9(0) = 9(0))hs — (BO)wstsa)
(4.10)

yielding (4.3) by vyt — vth, = (Vi) — (Vg )¢ O
COROLLARY 4.2. The nonlinear residual v defined in (4.1) satisfies

(4.11) vp—Lv= (0, — L)U'(2)¢ — Qr + T + P+ R, + 05,
where P, R, and S are as in Lemma 4.1 and Q and T are defined by
Qi =[O +w(w,0),0) ~ [(U@)) — df (U ()
(412) — (BO@+ (@, 0).0)00(@ + (@, 1),t) = B @))0s (x))
— (B(O)ve + (dB(U)Uz) v)



NONLINEAR STABILITY OF VISCOUS ROLL WAVES 595

and
(4.13) T = g(U(x + ¢(,1),1)) — g(U(x)) — dg(U(x))v = (0,1)O(|v]?).

Proof. We obtain the proof by Taylor expansion comparing (4.3) and U+ f (U ) —

4.2. Cancellation estimate. Our strategy in writing (4.11) is motivated by
the following basic cancellation principle.

PROPOSITION 4.3 (see [6]). For any f(y,s) € LP N C? with f(y,0) = 0, there
holds

(4.14) / / Gt — 5:9)(0a — Ly) [ (4, s)dy ds = (z,1).

Proof. Integrating the left-hand side by parts, we obtain
(4.15)

/ G, 0 ) f (y, t)dy— / Gz, t;) f (y, 0)dy+ / / (O L) Gl t—s39) (4, s)dy ds.
0
Noting that, by duality,
(O — Ly)*"G(z,t — s;y) = 0(x —y)o(t — s),

d(+) here denoting the Dirac delta-distribution, we find that the third term on the
right-hand side vanishes in (4.15), while, because G(z,0;y) = §(x — y), the first term
is simply f(x,t). The second term vanishes by f(y,0) = 0. O

4.3. Nonlinear damping estimate. The following technical result is a key in-
gredient in the nonlinear stability analysis that follows. Applying Duhamel’s principle
to (4.11) and using Proposition 4.3 yields
(4.16

)
vt = [ Gl tig)ul)dy
[ Gt s+ T Ry + )9 dyds 000 0),

Note that terms @, and S, involve derivatives of v (respectively, second derivative
in space and first derivative in time) of maximal order; hence to close a nonlinear
iteration scheme based on (4.16) would appear to require delicate maximal regularity
estimates rather than the straightforward ones that we have obtained. Indeed, esti-
mated using the linearized bounds of Corollary 3.4, the right-hand side appears to
lose several degrees of regularity as a function from H¥ — L? of v. However, the next
proposition, adapted from the methods of [16, 34], shows that higher-order deriva-
tives are slaved to lower-order ones, and hence derivatives “lost” at the linearized
level may be “regained” at the nonlinear level. This effectively separates the issues
of decay and regularity, allowing us to close a nonlinear iteration without the use of
maximal regularity estimates or a more complicated quasi-linear iteration scheme.
PROPOSITION 4.4. Letvg € HX (K as in (H1)), and suppose that for 0 <t < T,
the HX norm of v and the HETL norms of ¥(-,t) and 1, (-,t) remain bounded by a
sufficiently small constant. Moreover, suppose that the Froude number F', viscosity v,
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and velocity derivative i, satisfy the amplitude condition vii, < F~1. Then there are
constants C, 01 > 0 such that, for all 0 <t <T,

t
(417) [lo®)Fx < Ce™ " o(0)I[x +C/O e (|[ollFe + 11(r, ) 1) () dls.

The proof of this result will be given in Appendix A. Here, we briefly outline the
main ideas. First, notice that by subtracting from (4.7) for U the equation for U, we
may write the nonlinear perturbation equation as

Ve + (Av)y = (Bug)s = Cv = P = Q(v); + T (v) + Upthy — Upthy

(4.18) _ -
+ (), — (BO)air)

where A, B, C are as in (1.12), P, @, and T are as in Corollary 4.2, g and B are as

in (1.10), and it is understood that derivatives of U appearing on the right-hand side

are evaluated at (x + (z,t),t). Using (4.9) to replace U, and U;, respectively, by

Uy +ve — (Uyp + Uw)ljfﬁ and Uy + vy — (U, + vw)ljfﬁ, and moving the resulting v;1,

term to the left-hand side of (4.18), we obtain

(14 ¢a)vr = (Bua)y — (Av)s + Cv + P — Q(v)y + T'(v)

(Ot ve) 010, — (BO) (O o) 12 )

(4.19)

Define now the Friedrichs symmetrizer

1 0
(4.20) 2= (0 52) :
where 6% := — A1 = 7 3(F~! — 2vii,). By (1.21), ¥ is a symmetric positive definite
symmetrizer for the hyperbolic part of (4.19) in the sense that XA = (:; 7;51_2) is a

symmetric matrix, where A is as in (1.12). Furthermore, to compensate for the lack
of total parabolicity of the governing equation, here indicated by the presence of a
neutral eigenspace of the matrix X B, we introduce the skew-symmetric Kawashima
compensator

(4.21) K::n<(1) _01), 0<n<l,

and note that, in particular, for n > 0 sufficiently small there exists a constant 8 > 0
such that R(KA + XB) > 0.
Now defining the functional

K
E] = (v, Xv) + Z (900, K&I~ ) + (01v, £0Iv)),

Jj=1

where here (-, -) denotes the standard L?(R™) inner product, we find by a direct but
lengthy calculation using Sobolev embedding and interpolation to absorb nonlinear
and intermediate-derivative terms that

(4.22) NE () < =00l +C (loll3e + 11 (s ) 3 o))
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for some positive constants C,6; > 0, as long as ||U|| yx remains bounded and the
quantities 7 > 0, ||v|[gx, and ||(1t, ¥2)|| mx (o) remain sufficiently small. By Cauchy—
Schwarz and the fact that ¥ is positive definite by (1.21), we have (v) ~ [|v]|%,x for
1 > 0 sufficiently small, and hence (4.22) implies

HE W) < ~018(w) +C (lollFe + 1| Wes ) e o))

from which (4.17) follows by Gronwall’s inequality and, again, the equivalence of £(v)
and [|v]|3x-

For more details and a complete proof of the key inequality (4.22), see Ap-
pendix A.

Remark 9. The condition (1.21) gives effectively an upper bound on the allowable
amplitude of the wave, for fixed Froude number and viscosity. It is not clear that this
has any connection with behavior. Certainly it is needed for our argument structure,
and perhaps even for the validity of (4.17), which is itself convenient but clearly not
necessary for stability. The resolution of this issue would be very interesting from the
standpoint of applications, both in this and related contexts.

Remark 10. The Lagrangian formulation appears essential here in order to carry
out the analysis. One can carry out damping estimates for sufficiently small-amplitude
waves in Eulerian coordinates by the argument of [14] in the shock wave case; however,
the large-amplitude argument of [16], depending on global noncharacteristicity of the
wave—corresponding here to nonvanishing of u — s, where s is wave speed in Eulerian
coordinates—together with bounded variation of U,, appears to fail irreparably in
the periodic case. As we have shown here, the same argument succeeds in Lagrangian
coordinates, provided that the linearized convection matrix A is symmetrizable (the
meaning of bound (1.21)). For similar observations regarding the advantages for
energy estimates of the special structure in Lagrangian coordinates, see [30].

4.4. Integral representation/-evolution scheme. Recalling the Duhamel
representation (4.16) of the perturbation v along with the decomposition G' = U’ (z)e+
G of Corollary 3.4, we find that defining ¢ implicitly as

wwﬂ=—/mewaw%@My
(4.23) -

t +o0
<1// e@,t — 5:9) (P — Qy+ T+ Ry + 5.)(y, 5) dy ds,
0 —00

where e is defined as in (3.25), results in the integral representation

vty = [ Gl tyoly) dy
(4.24) / >~

t [e%s)
+/ / Gz, t —s;9)(P—Qy+T+ Ry +5;)(y,s)dyds
0 —00

for the nonlinear perturbation v; see [32, 14] for further details. Furthermore, differ-
entiating (4.23) with respect to ¢, and recalling that e(z, s;y) =0 for s < 1,
(4.25)

w%mez—/ 07 0% (e, t:y)Uo(y) dy

— 00

t +o0 .
—/ / Dok, t — 5,9)(P — Qy+ T + Ry + 54)(y, 5) dy ds.
0 —00
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Equations (4.24), (4.25) together form a complete system in the variables (v, 81, 9¥v),
0 < j,k < K +1, from the solution of which we may afterward recover the shift
¥ via (4.23). From the original differential equation (4.11), together with (4.25),
we readily obtain short-time existence and continuity with respect to t of solutions
(v,9¢,1,) € HE by astandard contraction-mapping argument based on (4.17), (4.23),
and (3.30).

4.5. Nonlinear iteration. Associated with the solution (U, ¢, ,) of integral
system (4.24)—(4.25), define

(426) Gt = sup (0ot g ()1 + )%
0<s<t
LEMMA 4.5. For allt > 0 for which {(t) is finite and sufficiently small, some
C >0, and Ey := |Uo||p1nmx sufficiently small,

(4.27) ((t) < C(Bo +¢(1)?).

Proof. By (4.4)-(4.6) and (4.12)—(4.13) and corresponding bounds on the deriva-
tives together with definition (4.26),
(4.28)

1P, QR S, T) | nirme < 1[0 00,8, 80 |72 + 10, v, e, 0h0) 372 < CCE* (1 46)72,

as long as [¢,| < [t;|gx < ((t) remains small. Applying Corollary 3.4 with ¢ = 1 to
representations (4.24)—(4.25), we obtain for any 2 < p < 0o

[v(, O)llLe) < C(1+ t)—%(l—l/p)EO

(4.29) +C((t) /t(1+t—s)‘5“/2‘1/”>(t—s)‘3(1+s)—éds
0

< O(Bo +((t)?) (1 +t)~0-1/p)

and

t

||(¢ta ¢w)('7t)||WK+1vP < C(]- + t)iéEO + CC(t)2‘/O (]. +1t— 8)7%(171/1))71/2(1 + 5)7%d3

(4:30) < C(Bo + (1)) (1 +1) 7307,

yielding in particular that ||(v¢, ¥, )|| grx+1 is arbitrarily small, verifying the hypotheses
of Proposition 4.4.'" Using (4.17) and (4.29)-(4.30), we thus obtain |[v(-, ) g (z)
< C(Eo + ¢(t)®)(1 + t)~ 7. Combining this with (4.30), p = 2, rearranging, and
recalling definition (4.26), we obtain (4.5). O

Proof of Theorem 1.1. By short-time H¥ existence theory, ||(v, ¥y, ¥,)| gx is
continuous as long as it remains small, and hence ¢ remains continuous as long as
it remains small. By (4.5), therefore, it follows by continuous induction that (t) <
2CEy for t > 0 if Ey < 1/4C, yielding by (4.26) the result (1.22) for p = 2. Applying
(4.29)—(4.30), we obtain (1.22) for 2 < p < p, for any p, < oo, with uniform constant
C. Taking p, > 4 and estimating

_3
1PNz, 1@z, 1Rllz2, 18] L2, 1T I|z2(t) < [l(v, e, ) 7s < CEo(1+)77

1 Note that we have gained a necessary one degree of regularity in 1), the regularity of 1 being
limited only by the regularity of the coefficients of the underlying PDE (1.2).
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in place of the weaker (4.28), then applying Corollary 3.4 with ¢ = 2, we finally obtain
(1.22) for 2 < p < oo by a computation similar to (4.29)—(4.30); we omit the details
of this final bootstrap argument. Estimate (1.23) then follows using (3.30) with ¢ =1
by

t
L 2 k- 3
way POl < OB+ 0% 5ty /0(1+t 5) (14 ) %ds

< C(L+1)% (B + (()?),

together with the fact that U(z,t) — U(z) = v(z — ¥,t) + U(z) — U(z — ¥), so that
|U(-,t) — U] is controlled by the sum of [v| and |U(z) — U(x — )| ~ [¢|. This yields
stability for |U — Ul|p1ngx |t=0 sufficiently small, as described in the final line of the

theorem. O

Appendix A. Nonlinear energy estimate. The goal of this appendix is
to prove the inequality (4.22), which was the key ingredient in the nonlinear energy
estimate in Proposition 4.4. To this end, we write the nonlinear perturbation equation
(4.19) for the variable v = (1,u)T as

(A1) (14 ¥a)vr = (Bua)e — (Av)s + Co + (Up + vg) Yr + g(U)0e + N,
where the function N' = N (v, Uy, ¥, ;) is defined by

(A2 M= P QU+ T~ (BO) (O ) o)

where P, @, and T are defined as in (4.4), (4.12), and (4.13), respectively. The key
to the analysis is to carefully keep track of the “hyperbolic” (7) and “parabolic” (u)
components of v separately. We begin by symmetrizing the linearized convection
matrix A of (A.1) by introducing the Friedrichs symmetrizer ¥ defined in (4.20) as

o 1 0 R l_ _
E—(O 5_2), oc =7 <F 21/uw),

noting in particular that it is symmetric positive definite by the amplitude condition

(1.21). The fact that SA = ( - 7;;1_2 ) is symmetric then yields hyperbolic properties

of the solution using straightforward energy estimates, integration by parts, and the
Friedrichs symmetrizer relation

1
valid for all self-adjoint operators S € C**™ and U € C". Furthermore, for conve-

nience we provide here a list of the block-structure of the various matrices arising in
the forthcoming proofs: notice by definition that

0 0 0 0 0 0
(A3> Ba B, = <0 *)7 Awa Awwa: (* 0)7 C, Cm = < *>7

which immediately yields

(A.4) YB, ¥B,, ¥,B, Y..B, $.B, = (8 0),

(A.5) SA,, S, S A, SuA,, SA,, = (0 0) ,
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and

(A.6) $C =%, = <2 0) .

*
We will refer back to these observations throughout the proofs in this appendix.
Remark 11. The apparently special structure leading to (A.3) is in fact a special
case of the more general structure pointed out in [30],'? shared by the equations of
one-dimensional gas dynamics, MHD, and viscoelasticity [30, 2] when expressed in
Lagrangian coordinates.
Defining the first-order “Friedrichs bilinear form” as

]:1[1)1,’()2] = <U1, EU2> + <(91’U1, 281U2> y

our first step in proving Proposition 4.4 is to establish the following lemma.

LEMMA A.1. Let v(-,0) € H' and suppose that for 0 <t < T, the H' norm of
v and the H? norms of ¥, and ¢, remain bounded by a sufficiently small constant.
Moreover, suppose that the amplitude condition (1.21) holds. Then we have the first-
order “Friedrichs-type” estimate

= —F1[v,v] < = Vg, WEBU) — (U, WS By

1
+0 (1ol + Hlualis + el
+Callblze (Il + e 32)

C
+ 2 (el + 1ellin) + Falo,wh],

(A7)

valid for all 0 <t < T, for some constants C1 2 > 0 where w := (1 + ¢z)_1 € L.
Proof. First, notice that from (A.1) and the symmetry of ¥ we have

(v, Yv) = (v, Xug)
= (v, wE ((Bva)s — (Ave) + Cv + Uty + vots + g(U)he + N))

N =
SR

where w := (1 + v,)~!. Since ¥B is symmetric by (A.4), then we have

(0, WE(Bvg) ) = — (wEy)v, Bug) — (Vg, wEBug) = <v, (wX), B), v> — (vg, wEBuy)

N =

and similarly
1
(v,wX (Av),) = (v, wEALv) — 3 (v, (WEA), v).
Furthermore, assuming that ||1¢]| 2 remains bounded, we clearly have the estimate

(v, WS ((Uy +va)tbt + g(U)hg)) = (v, wEU,ty ) — % (v, (wSihy), v) + (v, wSg(U )y )
S (lwllZe + ez + leall72)

12See conditions (A1)—(A2) of [30, 35].
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which, by using Cauchy—Schwarz, immediately yields the zeroth-order estimate
1d
5 (0 50) < = (ve, wEBug) + O ([ol72 + ez + 12 1Z2) + (0, wEN)

for some positive constant C' > 0.
Continuing, we find that

% (U, Whv,) = <vz,w12 ((va)m — (Av)y + Cv + (ﬁm + Uz) Py + g(ﬁ)1/)m)>

+ (2, WS ((Bg)ae — (AV)aa + (CV)z + (U + va)te + 9(U)02) )
+ <’U17 E (wN)r>
=: Il + IQ + <’Ur, by (w./\/)w> .

To estimate I, notice that (A.4) immediately yields

N =

(U, WX (BUa)a) = (Vo, WeBBava) + (Va, wo B BUsa) S wollzee luall?,
and that, similarly, we have the estimates
(Va, W B(AV)z) , (V2 weDCV) S Jwollze 0] 3
by (A.5) and (A.6). Finally, noting that for ||¢;|| 1~ bounded we have

(Vo, 0z ((Us + va)the + 9(U)s)) S llwallz= ([0llFn + l[elZe + [¢allZ2)
we see that together these yield the estimate

I S flwall o (IollFr + luelZe + 96l 72 + 192172) -

To obtain the analogous estimate on o, first notice that (A.4) and the bounded-
ness of ||w| e, together with Young’s inequality, imply

(Vz, WE (Bvy),.,.) = — (W) 20z + WUz, (Bvg)x)
= - <wa7 szvww> - <wa7 U}E-Bwvw>
— (Vg (WE),, Byvg) — (U, (WX), Bgg)

~ (1
< — Vg, WE Bz, ) + Ch (g”“w”QB + 6||um||2L2)

+ Collwsllz (lualfe + lussll?)

for some constants 51,52 > 0, where ¢ > 0 is a sufficiently small constant to be
chosen later. Similarly, using (A.5) and (A.6) we find that

1
(g, WE (Av),,,) = (Vg, WE (Azgv + Azvg)) — 3 (vg, (WEA), vs)
S Nl + lwsllze vl 7,

1
(018 (€0),) 5 (0l + Hlusls + el ).

Finally, noting again that ||¢¢|| is bounded, we find that

(0B (O 0000), ) S (64 Il ol + Sl ) = 5 (o (020, 00

1
S (€ + llwzllzoe + etlloe) [1ozllZe + lluzlZze + <ol
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and

_ 1
(ve, wE (9(0)9s) ) S ellvallZz + gll%llip-

Therefore, by choosing ||¢:|| g2 < €, so that ||1),¢]| L~ < € by Sobolev embedding, and
noting that ||¢,¢||Le is bounded, we have

~ 1 1 1
B2 £ = (vers wEB022) 4§ (ol + el + il + 2ol + 21l
e (ol + ueel32)

for some constant C' > 0, from which the lemma follows by noting that ||wg|pe~ <
[*2]| 2 by Sobolev embedding. O
From Lemma A.1 it follows that if the diffusion ¥ B were positive definite, we

would immediately have the bound

1d 2 2 2 2

377l vl < =0llvllz + Co (Iolze + el + Nell) + Filo, wA]
by using Sobolev embedding and choosing € > 0, ||t || g2 sufficiently small, which, up
to the contribution of the nonlinear residual terms N, has the form of the inequality
stated in Proposition 4.4; see the proof of Lemma A.2 below for details on how this
calculation would proceed. However, the lack of total parabolicity in the governing
equation (1.2) is manifested here in the fact that the matrix X B is not positive definite,
rather being only positive semidefinite with rank one. In order to compensate for this
“degenerate diffusion,” we introduce the Kawashima compensator K, defined in (4.21)

as
0 -1
K = 17( 1 0 > ,
where 0 < 7 < 1 is a small parameter which will be determined later. The fact that
the hyperbolic effects in (A.1) can compensate for this degeneracy in the diffusive
term X B is the point of the following lemma.
LEMMA A.2. Assume the amplitude condition (1.21) holds. Then for n > 0

sufficiently small, the matriz 2B + KA is positive definite and, furthermore, the
associated bilinear form satisfies the coercivity estimate

(&, (EB+KA) &) >0 (&7 +nllélli)

for some constant 0 > 0 and all € = (&1,&)" € L2(R).
The proof of Lemma A.2 is based on a simple matrix perturbation argument and
is omitted. Defining now the first-order “Kawashima bilinear form” as

Ei[vr, va] i= Fifvr, va] + (Ozv1, Kvg)

and noting the special structures

0 = * 0 * ok

we have the following refinement of the first-order Friedrichs-type estimate in Lemma
Al
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LEMMA A.3. Under the same hypothesis as that of Lemma A.1 and for n > 0
sufficiently small, we have the first-order “Kawashima-type” estimate

1d c
5710 ) < =01 (lualls +nl7ellzz) + o (Iol1Ze + el + lvellEn) + Eifv, wA]

for some constants 61,C > 0.
Proof. Using (A.8) along with arguments similar to those used in Lemma A.1, we
obtain the estimate

1 _ _
561& <’Uw, K’U> = <Uwa wk ((va)w - (AU)JU + Cv + Upthy + vaty + Q(U)% +N)>
<C LT 5 2 1 2 1 2 1 2 2
< O (3ol + 8l + 5 lualiZs + S hosnallZs + 3 (Wl + 15 ]32)
— (g, WK Avy) + (v, KwN)
for some positive constants 61, C' > 0, and for any § > 0 sufficiently small, where we

have used that [|t)¢]|pe < ||¢t|| g1 can be chosen sufficiently small, say of order O(4).
It follows then from Lemma A.1 that

1
5@81 [v,0] < = (U, w (BB + KA) vg) — (Vg wEBUgy)
1 2 n_ 1 2 2 N 2
0 ()Mol (L4 2 ) Nuale o+ 00+ )l + F sl
+ Callbalan (ol + lues32)

1 1
0 (34 3) (all + 10nli) + Exlovn

By Lemma A.2; then, we find that for n > 0 sufficiently small, say 0 < n < 19, we
have the estimate

- <vwvw (XB+ KA) vw> - <vmszvm> <-0 (||uw||2L2 + 77||Tw||%2 + ||um||2L2)

for some constant # > 0. Thus, by fixing § and choosing € = £(n) such that

0 no
(Ag) O<5—E and 0<€(7])—z,

we find that

on

(n(=0+C18) + &) 7272 = = Il

By subsequently requiring that the free parameter 1 > 0 satisfy
0o

A].O O < < i PYZ R )

(A.10) nmm{zcl no}

we similarly find that

N 6
(~0+ 501) lusallte < ~Flhussl 32
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from which it follows by the above requirements on the parameters 7, €(n), and ¢ that

5%51[7}’”] < -0 (||uw||%2 + 77”7—90”%2 + ||um||2L2)

~ 1
+C <||v||%2 + Ellumllr‘b) + Colallmr ([0l + luwalZ2)

C
+ 73 (ellz + el ) + Exlv, wA].

Next, the Sobolev inequality ||gz||32 < [|goe|lr2]lg]l22, along with Young’s inequality,
201
~ én2
sufficiently small so that —& + Ca||¢5[|%: < 0, completes the proof. O

Using similar arguments, we can obtain higher-order Kawashima-type estimates
by defining the kth-order Kawashima bilinear form as

implies that %Huwﬂig < B lugs|2s + lul|2., which, by now choosing ||¢)s||%:

Exklvi,ve] := (v, Xv) +

J

k
(<8£U1, K8£‘1v2> + <({93JC-’U1, Eaivg»

=1
for each k € N. Indeed, the following estimate can be obtained by simply iterating the
above argument and using the Sobolev inequality ||g: ||z < a||0772g|lr2 + a7 t|g| L2
for a > 0 sufficiently small.

LEMMA A.4. Let j € N and v(-,0) € H’, and suppose that for 0 < t < T, the
HJ norm of v and the HI*! norms of v, and 1; remain bounded by a sufficiently
small constant. Moreover, suppose that condition (1.21) is satisfied. Then for n > 0
sufficiently small there exist constants 01,C > 0 such that, for all 0 <t < T,

1d 2 2 c 2 2 2

5&‘2‘[”7“] < =01 (Jluellz + 77||Tw||Hf—1)+? (lollZ2 + el Fs + 19l ) +Elv, wN].
To complete the proof of Proposition 4.4 it remains to estimate the terms &;[v, wN]

corresponding to the nonlinear residual terms in the perturbation equation (A.1). In

particular, our goal is to demonstrate that these terms can be absorbed into the bound

already computed, in the sense that there exist constants C' > 0 and 0 < ¢ < 1 such

that

(A1) &lv,wN] < e (luallfy + Iallzs-r) + C (lllZe + el + Ialf) -

To this end, we notice that from (4.4) we have the identity

1
/ dg(U + 9v)d9> V.

0

P = (s@) - 9(0)) o =

Using Sobolev embedding, then, we can estimate P in H' in a straightforward way,
using that ||v|| L~ is assumed to be small (say, at most one). Indeed, using the above
integral representation for P we immediately obtain

1Pz S lloellLz S llvllc2ll¢allne S lollc2ll¢al a
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and similarly

1P e € H (/ (0 + 008 ) T+ 1), 4 H (f g0 + 608 (w1,

S lvdallzz + lvatpel 2llvll Lo + [[(vihe)a ]| 22

S olle2ll$ellar + llvell 2 [Yella ol zoe + lvell L2 [$ell a4 [0l Lo || 2
< (Iollzrs + ol ) oozl

S ol vl me-

L2

From these estimates, together with Cauchy—Schwarz, it follows that

E1fv, wP] S vl 2l Pllez + [[vall L2 [Pl 2 + l[vel o2 | (wP)e | 22

< ol el

where, again, we have used the fact that ||¢;| g1 is small. Since we can control the
size of ¢, in H', it follows that the ||v.||z> term above can be absorbed in the sense
that the above inequality is of the form (A.11).

Using similar arguments, we can express T'(v) as

1 1
T(w) = g(U) — g(U) — dg(U)v = (/ (/ d*g(U + 0$v)d8> Ov d0> v,
0 0
from which we get the estimates
1722 < lollz=llvllzz < llvllFn
and, similarly,

IT()ellzz < [0l + ol < llv

|1,
where we have used the fact that ||v||z: is small. As above, these estimates readily
yield
E1[v, wT) = (v, 2wT) + (v, KwT) 4+ (v, 2(wT),)
S lollzllvllzn + vzl ol

which again absorbs due to the control over v in H*. o
To analyze the remaining terms of N, consider the term (B(U)(U, + Uw)ljfﬁ)z

present at the end of (A.2). Using the representation B(U) = (fol dB(U + 0v)df)v +

B(U) along with the smallness of v in H! and v, in H!, it follows that the associated
contribution to & [v, wN] can be absorbed as long as the highest-order Friedrichs term

(o0 (w0 (BO@ 0722 ) )

can be shown to absorb. Using integration by parts, we have

<’Ur,2 <w (B(U)(Uz + )7 f%))g) =— <(Evz)w ;W (B(O)(Uz +v2) 7 i’%)) :
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which absorbs by estimates similar to those previously obtained, using the smallness
of vin H! and v, in H?.

To estimate the contribution of the final terms of &; [v, wA], associated with —Q,
first write Q := Q1 — Q2 + Q3, where

Q1 := f(U)— f(U)—df(U)v = </01 </01 2 f(U + 0511)d8> v d0> v,

Q2 := B(U)U, — B(U)U, — B(U)v,,
Qs == (dB(U)U,) v,

and notice that the contribution of & [v, w(Q1 + Q3),] absorbs using estimates anal-
ogous to those obtained above for P and T. To illustrate how to handle the contri-
butions of Q2, first notice that by (4.9) we have

Va

1
Qs = (/O dB(U + 6v)do u) (Us + v2) 1+,

—— — B(U) (Uy + vy
which absorbs as above by the smallness of v in H' and v, in H?.
From the above considerations, then, we immediately have the following lemma.
LEMMA A.5. Under the same hypothesis as that of Lemma A.1, we have the
first-order “Kawashima-type” estimate

d
6l 0] < =01 (luallfn + I7ellZe) + C (I0l17e + el + l1elF)

valid for some constants 61,C > 0.

By similar arguments, we may obtain an analogous H™ estimate (substituting
everywhere H™ for H! and H™~* for L?) for any m € N, as in the statement of Lemma
A.4. Finally, using one last time the Sobolev inequality ||gz||2: < ||gzallz2/lgllz2,
together with Young’s inequality, we have completed the proof of the key inequality
(4.22), from which the proof of Proposition 4.4 follows.

Appendix B. High-frequency resolvent bounds. In this appendix, we carry
out the high-frequency resolvent bounds needed for the high-frequency solution oper-
ator bounds of section 3.1. To begin, write

Le = e ¥ Le®® = 9BO — DA + C,

where 9 := (9, + i€). Clearly, then, the norm |||l := [|0f] r2qo.x)) + |1l 22(0.x7)
is equivalent to the usual norm || f|| g1 (j0,x)) for & € [—m, 7] bounded. Further, note
that, for periodic functions f, g on [0, X], we have the usual integration by parts rule

where (-,-) as above denotes the standard L? complex inner product on [0, X]. The
main result of this appendix is then that for || bounded away from zero and suffi-
ciently small the resolvent operator (A — L¢) ™" is uniformly H' — H' bounded for
R(A) = —n < —0 < 0 for some constant § > 0, which is the content of the following
lemma.

LEMMA B.1. Under the derivative condition (1.21), there exist constants C, R > 0
and a constant 8 > 0 sufficiently small such that for |[\| > R and R\ < —6,

(B.2) lwll z1 (o, x7) < Cll(Le — Nwllm1 ([0, x7)-
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Proof. For %, K, as defined in the proof of Proposition 4.4, define the first-order
Kawashima—Bloch bilinear form as

~

&1, va] = (v1, Zv1) + <3v1, KU2> + <3v1, EéU2>

and suppose w is a solution of (A — L¢) w = f. Then using the coercivity estimate of
Lemma A.2, it follows by taking the real part of the equation

Ei[w, (A — Le) w] = & [w, f]

and using the equivalence of & [w,w] ~ [w|%,: that, similarly as in the proof of
Proposition 4.4, we obtain

(B.3) (RA + 0w} + 01BO w72 < C(|wll72 + [ f15:), 6> 0.

Similarly, defining the analogous first-order Friedrichs—Bloch bilinear form

~

.7:1 [Ul, UQ] = <’U1, E’U1> + <3U1, Zé’U2>
and taking the imaginary part of the equation
ﬁl[wa ()\ - LE) w] = j-:l[wvf]v
we obtain
(B.4) SA[[wl2z < CllwlF + I1BOEw]Z2 + [ £11%:)-
Summing (B.3) with a sufficiently small multiple of (B.4), we obtain for R\ > —6/2
Mlwllf < Clllwllg, + 11,

yielding the result for |A| > 2C by equivalence of H' and H*. n|
Appendix C. The subcharacteristic condition and Hopf bifurcation. At

equilibrium values u = 772 > 0, the inviscid version
0 2 —U
q( ) 2F T2
u3

of (1.8) has hyperbolic characteristics equal to the eigenvalues + T of df, and equi-

librium characteristic “73 equal to O, f(7,u. (7)), where u.(7) := 771/2 is defined by
q(7,u+(7)) = 0. The subcharacteristic condition, i.e., the condition that the equilib-
rium characteristic speed lie between the hyperbolic characteristic speeds, is therefore

w
w

u u
(C.2) 5
or F' < 4 as stated in Remark 2.

For 2 x 2 relaxation systems such as the above, the subcharacteristic condition
is exactly the condition that constant solutions be linearly stable, as may be readily
verified by computing the dispersion relation using the Fourier transform. For the
full system (1.8) with viscosity v > 0, a similar computation, Taylor expanding the
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dispersion relation about £ = 0, reveals that constant solutions are stable with respect
to low-frequency perturbations if and only if the subcharacteristic condition F' < 4 is
satisfied.

Next, let us examine the profile ODE ¢*7/ + ((2F) 77 2) =1 —7(q¢ — ¢7)? —
cv(t727")’ near an equilibrium ug = (q — 1) = 70_1/2 > 0, and examine the circum-
stances for which Hopf bifurcation occurs. Linearizing about 7 = 79, and rearranging,
we obtain

3/2—c¢ ud
C.3 “200 4 (2 A+ Ug ’ — 07
(C.3) vty T+ (¢F — )T w2 iy,
for which the eigenvalues are the roots u of au? + Bu + v = 0, where a = cvr~2,
3
B=c*—c% and vy = uz{) 2/; Considering this as a problem indexed by parameters

uo, ¢, and ¢, we see that Hopf bifurcation occurs when roots p;(uo,c,q) cross the
imaginary axis as a conjugate pair, i.e., when § =0 and v > 0.
These translate, using (C.2), to the Hopf bifurcation conditions
ug
C4 c=cs=—= and F >4.
( ) S \/F
Experiments of [17] indicate that bifurcation occurs at minimum wave speed, i.e., as
c increases through the value ¢s. That is, the minimum wave speed among nontrivial
periodic waves is
3

U, 1
(C.5) c=cy = —L = ,

vVF \JF s
and the minimum value of F' for which nontrivial periodic waves occur is F' > 4. The
frequency at bifurcation is

w = \/%:Tg/zuflﬂ (\/1?—2),

and the period is X = 2Z.
So prescribing X as we do, we must choose F' > 4, then solve w = 27” to obtain

42 1/5
(0 v (Es)

Near this value and with ¢ near cg, we should find small-amplitude periodic waves.

Remark 12. The above discussion shows in passing that, similarly as observed
in the conservative case in [20], small-amplitude periodic waves arising through Hopf
bifurcation from constant solutions are necessarily unstable as solutions of the time-
evolutionary PDE, since they inherit (a small perturbation of) the necessarily unstable
dispersion relation of the limiting constant solution from which they bifurcate. On the
other hand, in the large-amplitude limit, roll waves might well be stable. As observed
by Gardner (see [5, 20]), this is determined by stability of the bounding homoclinic
wave, which in the conservative case was known to be unstable. A good starting
point for the study of roll waves, therefore, might be to determine linearized stability
of solitary pulse solutions corresponding to homoclinic solutions of the profile ODE.
Evidence for linearized stability of some viscous roll waves is given in [17], namely,
the approximate Dressler waves arising in the small viscosity limit.
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Appendix D. Numerical stability investigation. We conclude by suggesting
a number of practical techniques for the numerical testing of stability. These can be
carried out either in the Eulerian coordinates of [18] or in the Lagrangian coordinates
of this paper. As suggested in a more general setting in [1], several of the algorithms
may be easily adapted from an existing nonlinear evolution code. Comparison of these
different methods and determination of stability in different regimes are interesting
problems that we hope to carry out in future work.

D.1. Method one: The power method. The power method is an easy numer-
ical method to approximate the function R(€) := maxRo(L¢) determining stability,
with R(¢) < 0 for £ # 0 corresponding to (D1) and R(£) < —6£2 corresponding to
(D2). (Condition (D3) can be verified by an Evans analysis, as was already done in
some cases in [18] and elsewhere.)

The method is just to approximate numerically the time evolution of the lin-
earized equation w; = L¢w on [0, X| with periodic boundary conditions, which should
be a straightforward adaptation/simplification of nonlinear code presumably already
written to study nonlinear stability with respect to periodic perturbations. Denote

the solution operator as e“¢*. Then a good approximation is
"< T f 2

D.1 R(¢) = T log ———,

(D.1) (€) ~ T log 1 py

where f is a square wave pulse centered at x = X /2 and T is large, say T' = 10, T' = 50,
or T'= 100. This should be relatively straightforward, and plotting R(¢) against £ for
¢ € [—m, ] should quickly determine stability. See [3] for related investigations and
discussion.

D.2. Method two: Discretization. Instead of Evans computations as in [20]
(these involved finding the zero-level set of a two-parameter Evans function, with
reported problematic results), one could alternatively proceed from a Bloch decom-
position/matrix linear algebra point of view.

That is, one could discretize L¢ on [0, X] with periodic boundary conditions as a
large tridiagonal matrix

(D.2) T(E):=(A+i)BA+1i) — (A+i)A+C,

acting on vectors (Uy,...,Ur) of sample points, where U; ~ U(Xj/L), and virtual
point Uy = Uy, (periodicity), and A is a discrete derivative, for example, the forward
difference over h := X/L, treating [0, X] as a torus to generate needed values U; for
7 < 0orj> L. For each £, one may then call the fast linear algebra functions in
MATLAB to generate the real part of the largest real part eigenvalue of T" as a function
R(&). If R(§) < 0 and R(§) < —c€?, ¢ > 0, then we have spectral stability—otherwise
not. This should be fast even for a 100 x 100 matrix or so. The discretization in & is
over [—m, 7], so this is also no problem: 50 points should suffice.

Note [1] that discretization of the linearized operator L is typically already done
for a standard method-of-lines realization of the linearized time evolution.

Remark 13. In an interesting recent talk by Barkley [1], he pointed out that
using the power method for e, t small,!® with an implicit scheme is something like
using the inverse power method on (I — Lt)~!. Note that (I — Lt)~! is expected to be
compact for ¢ small in parabolic problems, so this is a preconditioning step paralleling
the Fredholm theory or Birman—Schwinger approach on the analytical side.

13This is essentially equivalent to the method suggested in Appendix D.1.
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D.3. Method three: Nonlinear evolution. The simplest test of course is just
to run the full nonlinear problem on a large domain [-N X, NX], N > 1, with periodic
boundary conditions and square pulse wave initial conditions centered at x = 0. If the
difference between the solution and the unperturbed periodic wave remains bounded
in L°°, then the wave is stable, otherwise not. The experiment should be run only up
to time T' < N X to avoid interactions with the boundary. This and the sensitivity of
numerical evolution of nonlinear equations are the main disadvantages of the method.
The advantage is that this can be converted from existing nonlinear code for evolution
on a single period [0, X] (easy to change). A variation is to solve the linearized
equations vy = Lv := (0, B0y — 0, A + C)v numerically, which would be more stable
but require modification (straightforward, however) of the nonlinear code, changing
over to linear.

D.4. Method four: Evans function computations. A final approach is to
compute the Evans function D(, A) (straightforward [20, 18], but not particularly nu-
merically well-conditioned) and plot zero-level sets of D(§,-) for varying £ (harder).
This is not recommended in the basic form just described; in practice this was time-
intensive and gave poorly resolved results [20]. A somewhat more reasonable varia-
tion would be to plot just the level sets near (£, ) = (0,0) (difficult, due to cross-
ing/singularity at the origin, but contained) to verify (D2), then use winding number
computations for D(¢,-) to verify (D1).

Acknowledgment. Thanks to the two anonymous referees for their careful read-
ing of the paper and for helpful comments that improved the exposition.
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