
c© 2009 Mathew A. Johnson



ON THE STABILITY OF PERIODIC SOLUTIONS OF NONLINEAR
DISPERSIVE EQUATIONS

BY

MATHEW A. JOHNSON

B.S., Ball State University, 2005

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2009

Urbana, Illinois

Doctoral Committee:

Associate Professor Richard S. Laugesen, Chair
Associate Professor Jared C. Bronski, Director of Research
Associate Professor Dirk Hundertmark
Associate Professor Vadim Zharnitsky



ABSTRACT

In this work, we consider varying aspects of the stability of periodic traveling wave

solutions to nonlinear dispersive equations. In particular, we are interested in deriving

universal geometric criterion for the stability of particular third order nonlinear dis-

persive PDE’s. We begin by studying the spectral stability of such solutions to the

generalized Korteweg-de Vries (gKdV) equation. Using the integrable structure of the

ODE governing the traveling wave solutions of the gKdV, we are able to determine

the role of the null-directions of the linearized operator in the stability of the traveling

wave to perturbations of long-wavelength by conducting what amounts to a rigorous

Whitham theory calculation. By then considering the characteristic polynomial of the

monodromy map (the periodic Evans function) in a neighborhood of the origin in the

spectral plane, we derive two separate instability indices. The first is a modulational

stability index which, assuming a particular non-degeneracy condition holds, determines

a rigorous normal form of the spectrum in the neighborhood of the origin, and yields

necessary and sufficient criterion for the traveling wave to be modulationally stable.

The second is an orientation index which counts modulo 2 the total number of periodic

eigenvalues of the linearized operator with the positive real axis. This is essentially a

generalization of the solitary wave stability index. Both of these indices are expressible

in terms of a map between a parameter space which parameterizes the periodic travel-

ing waves of the gKdV to the conserved quantities of the governing PDE. Moreover, we

show how our general methods can be used to derive transverse-modulational instability

indices, i.e. in analyzing the stability of such solutions to long-wavelength transverse

perturbations in higher dimensional equations.

We also study the nonlinear stability of periodic traveling wave solutions of the
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gKdV within the class of solutions having the same period. In particular, by conducting

a detailed analysis of the Hamiltonian system satisfied by the traveling wave profile,

we prove that in many cases the periodic spectral instability index mentioned above

determines the orbital stability of the underlying traveling wave. However, the signs

of two other indices play a role in our analysis, neither of which are present when one

considers exponentially decaying solutions: this stands in stark contrast to the solitary

wave theory, where such a solution is nonlinearly stable if and only if it is spectrally

stable (assuming a particular non-degeneracy condition holds).

Finally, we show how our results extend to other classes of dispersive equations. In

particular, we derive modulational and finite-wavelength instability indices for the gen-

eralized Benjamin-Bona-Mahony (gBBM) equation, as well as the generalized Camassa-

Holm equation. Moreover, we prove a transverse instability result for the gBBM equa-

tion analogous to that for the gKdV.
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CHAPTER 1

Introduction

Among the most fundamental problems in the field of differential equations is that

of stability of particular classes of solutions. Essentially, this question addresses the

robustness of such solutions, i.e. their ability to persist under perturbation. For differ-

ential equations governing physical processes such information is of practical importance

since solutions which are unstable do not manifest in physical situations, except pos-

sibly as transient phenomena. Thus, if ones goal is to restrict a particular physical

system to a stable configuration, this question is clearly fundamental to such analysis.

In particular, the study of this question aims at giving researchers practical and efficient

“rules of thumb,” derived from rigorous mathematical proof, to ascertain the stability

of mathematical solutions arising in various physical models.

Within the context of nonlinear dispersive equations, probably the most famous

model equation is the Korteweg-de Vries (KdV) equation

ut = uxxx + uux, (1.1)

where (x, t) ∈ R × R+. This equation was first formulated by Boussinesq [13], but is

named after Diederik Korteweg and Gustav de Vries who studied it in [42]. Korteweg

and de-Vries used the KdV as a model equation for the propagation of shallow water

waves along a canal, but it has since been shown to arise as a model in many physical

systems including long internal waves, ion acoustic waves in plasmas, and gravity waves.

This equation can be viewed as a nonlinear perturbation of the Airy equation

ut = uxxx, (1.2)
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which is a linear dispersive equation with dispersion relation1 ω = −ξ3. That is, (1.2)

admits plane wave solutions of the form uξ(x, t) = ei(ξx−ξ3t) for each ξ ∈ R. It follows

that plane wave solutions of (1.2) of different spatial frequencies propagate in time

at different velocities: in particular, the higher the frequency the faster the temporal

propagation. This encompasses the dispersing effects of the Airy equation and suggests

that solutions of (1.1) which decay as x → ±∞ should disperse as solutions of (1.2).

While this is indeed the case2 in many situations, notice that the nonlinearity present

in (1.1) is of Burger’s type, and hence one expects the nonlinearity to “focus” solutions

and cause wave breaking. This mix of linear dispersion and Burger’s nonlinearity leads

to a quite curious phenomenon of the KdV: there exists solitary wave solutions termed

“solitons” which are traveling wave solutions of the form u(x, t) = uc(x− ct) for c > 0

which propagate to the right in time3. Clearly, such solutions neither disperse nor

develop singularities and exists as a result of the delicate balance of dispersion and

nonlinearity in (1.1). Moreover, these solutions are easily seen to satisfy the scaling

relationship uc(x) = cu1(
√

cx), and hence the velocity of such a soliton solution is

directly related to the amplitude, with frequency scaling as c−1/2.

These soliton solutions are best described by using the complete integrability of (1.1)

using the inverse scattering transform. The scattering transform for the KdV can be

considered as a nonlinear analogue of Fourier transform which can be used to solve the

Cauchy problem for the Airy equation. In particular, it follows from this theory that, in

general, given any sufficiently smooth initial data solutions of (1.1) exist globally in time

and as t →∞ the solution decouples into a “radiation” component4, which propagates

rightward and disperses like a solution of (1.2), and a nonlinear superposition of soliton

1Notice this is different than the group velocity of a plane wave solution of (1.2), which is − dω
dξ

= 3ξ2.
This suggests that such plane wave solutions propagate to the right for all t > 0.

2There are also radiative terms arising in connection with the complete integrability of the KdV.
More will be mentioned on this subject later.

3Technically, actual solitons exist as a result of the complete integrability. They are characterized
not only by their persistent shapes, but also by their interactions with one another.

4The radiation terms arise in connection with the Lax pair formulation mentioned above. In this
theory, one associates to initial datum u0 of (1.1) a Hill operator L = −∂2

x + u0 acting on the space
L2(R;R). The corresponding solution of (1.1) is characterized by the spectrum of L and various trans-
mission and reflection coefficients. The radiative component of the solution is associated with the
continuous spectrum of L, while the soliton components are associated with the point spectrum.
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components which propagate to the left. This topic of the complete integrability is a

vast and interesting area in its own right, but its use is limited by the fact that many

equations arising in physical applications are not completely integrable. For instance,

the generalized KdV (gKdV) equation

ut = uxxx + f(u)x, (1.3)

is known to be completely integrable only when f is a cubic polynomial, which corre-

sponds to the Gardner equation

ut = uxxx +
(
ωu2 + εu3

)
x

where (ω, ε) ∈ R2, which includes the KdV and modified KdV as special cases.

While the gKdV equation (1.3) does not in general possess exact “soliton solutions”,

which requires complete integrability, it does admit solitary wave solutions of the form

u(x, t) = uc(x − ct) where the wave profile uc decays exponentially at ±∞. This is

easily verified by phase plane analysis, where the solitary wave corresponds to an orbit

homoclinic to zero5. The stability of such solutions can no longer be ascertained by the

inverse scattering transform, as in the case of the KdV, but nonetheless the stability

theory is well understood. In this case, one can use variational methods in order to

characterize the solitary wave as a critical point of a nonlinear functional acting on an

appropriate space. The nonlinear stability of such a solution is then determined by

the classification of this critical point as a local minima or not. For more details, see

section 1.1 of this chapter. When considering the spectral stability of such solutions,

one encounters a spectral problem on L2(R) of the form

∂xL[uc]v = µv,

where the operator L[uc] = −∂2
x − f ′(u) + c is a self adjoint second order differential

5More generally, a solitary wave of a nonlinear PDE is required to be asymptotically constant. Hence,
they correspond to either orbits homoclinic to an equilibrium solution or to orbits heteroclinic between
equilibrium solutions.
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operator with asymptotically constant coefficients, and ∂xL[uc] is the Frechét deriva-

tive (linearization) of (1.3) about the solitary wave uc. The choice of the space L2(R)

corresponds to considering spectral stability of the solution to spatially localized pertur-

bations. Spectral stability of the solitary wave uc is then equivalent to the requirement

that the spectrum of the operator ∂xL[uc] acting on L2(R), denoted spec(∂xL[uc]), is a

subset of the imaginary axis6. Since the linearized operator ∂xL[uc] has asymptotically

constant coefficients, its essential spectrum can be characterized by Weyl’s theorem and

is seen to coincide with that of the operator −∂3
x acting on L2(R). Thus the essential

spectrum of the linearized operator is confined to the imaginary axis and the spec-

tral stability of such a solitary wave solution is characterized by the point spectrum of

∂xL[uc], i.e. by the L2(R) eigenvalues of the linearized operator.

This ability to reduce spectral stability of a solution to analyzing point spectrum

of an operator is very nice feature of the solitary wave theory which is typically not

the case in other contexts. In particular, if one considers traveling wave solutions

u(x, t) = uc(x − ct) of (1.3) where the wave profile uc is a T -periodic function of its

argument, then the concept of spectral stability become a much more delicate issue.

This stems from the fact that since the coefficients of the linearized operator ∂xL[uc]

are periodic, the L2 spectrum consists entirely of continuous spectrum. In particular,

there are no L2 eigenvalues of the operator ∂xL[uc] in this case: for more information,

see section 1.2 of this introduction. In order to circumvent this difficulty, it is often

easier to restrict the class of admissible perturbations of the underlying periodic wave

uc. Indeed, if one considers perturbations which belong to the real Hilbert space of

T -periodic functions of R which are square integrable over a period, which we denote

L2
per([0, T ]), then the spectrum of the linearized operator ∂xL[uc] becomes discrete and

coincides with the point spectrum. Moreover, by considering this class of admissible

perturbations one can utilize the variational methods familiar from the solitary wave

theory to study the nonlinear stability of the T -periodic traveling wave solution to
6In general, spectral stability occurs if the spectrum does not intersect the open right half plane

in C. However, the Hamiltonian structure of the linearized operator implies the set spec(∂xL[uc]) is
symmetric about the real and imaginary axis, from which our claim follows.
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T -periodic perturbations. While this may make the stability theory of such solutions

easier on a mathematical level, it has the clear disadvantage of artificially restricting

the class of admissible perturbations by requiring them to have the same periodic struc-

ture as the underlying wave. Moreover, these variational methods fundamentally rely

on integration by parts, and the periodicity of the perturbations is needed in order to

handle the boundary terms in a clean way. As such, there has been no progress in

developing a nonlinear stability theory of such solutions to non-periodic perturbations.

From the prospective of applications, however, it is desirable to consider either local-

ized perturbations, corresponding to the L2(R) case, or uniformly bounded continuous

perturbations7.

The purpose of this thesis is to consider the stability properties of the periodic

traveling wave solutions of (1.3) and related dispersive equations. We study both the

spectral stability to localized perturbations, as well as nonlinear stability to periodic

perturbations. A nice relationship between these two stability theories arises which

more or less parallels that of the solitary wave stability theory. In particular, we show

that (assuming a nondegeneracy condition is satisfied) such solutions of the KdV are

nonlinearly stable to periodic perturbations if and only if they are spectrally stable to

such perturbations. Moreover, we are able to hint at a possible way to extend orbital

stability calculations to considering classes of perturbations which are periodic with

period close to the underlying wave: this remark is very formal and we make no attempt

at developing such a theory in this thesis, although we hope to study this problem

extensively in the future.

The outline of this thesis is as follows. In the next three sections of this chapter,

we review elements of stability theory as it applies to solitary and periodic solutions.

The next three chapters are devoted to the stability analysis of periodic traveling wave

solutions of the gKdV equation (1.3). In chapter 2, we study the spectral stability of

such solutions to both periodic and long-wavelength perturbations. We develop stability

indices in each of these cases which we express as Jacobians of particular maps between
7By standard results in Floquet theory, the spectral stability to such perturbations is equivalent to

spectral stability to localized perturbations.
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spaces parameterizing the periodic traveling wave solutions. In chapter 3, we extend our

results on the spectral stability to periodic perturbations to study the nonlinear stability

of such solutions to periodic perturbations. The methods are variational in nature, and

thus there is a close parallel to the solitary wave theory. In chapter 4, we study the

stability of periodic traveling wave solutions of (1.3) as solutions to higher-dimensional

nonlinear partial differential equations: in particular, we study the stability of such

solutions to perturbations which have long-wavelength in the transverse direction of

the propagation of our solution. Finally, in chapter 5 we show how the techniques

from chapter 2 and 4 can be extended to other nonlinear dispersive equations. In

particular, we conduct a spectral stability analysis of the generalized Benjamin-Bona-

Mahony (gBBM) equation

ut − uxxt + ux + f(u)x = 0

and the generalized Camassa-Holm equation

ut − uxxt = 2uxuxx + uuxxx + (f(u)/2)x − kux,

as well as conduct a transverse stability analysis for such solutions of the gBBM equa-

tion.

1.1 Solitary Wave Stability Theory

As the work in this thesis concerns the stability of periodic solutions of certain classes

of dispersive PDE, we find it appropriate to begin with a review of the parallel results

in the solitary wave context. In this theory, one considers asymptotically constant

solutions of nonlinear equations of the form

Dut = N(u), (1.4)

6



where D is an invertible operator and N is a nonlinear differential operator, both of

which are considered as acting on L2(R). When considering traveling wave solutions of

the form u(x, t) = uc(x− ct), one encounters the ordinary differential equation

N(uc)− cDuc,x = 0, (1.5)

from which simple phase plane analysis can be used to prove the existence of asymp-

totically constant solutions.

In the study of the spectral stability of such a solution, one must determine the

L2(R) spectrum of the operator

L := N ′(uc)− cD∂x,

and spectral stability is equivalent to the condition that spec(L) does not intersect the

open right half plane. As previously mentioned, the essential spectrum of L does not

usually play a role in the spectral stability analysis, as it is characterized by Weyl’s theo-

rem and, in most cases, seen to lie in the stable half space8. For example, if one considers

solutions of the gKdV equation (1.3) which are asymptotically zero, then the essential

spectrum of the associated linearized operator ∂x

(−∂2
x − f ′(uc) + c

)
corresponds to the

L2 spectrum of the constant coefficient operator −∂3
x + (c − f ′(0))∂x, which is easily

seen to be the imaginary axis by the Fourier transform. Thus, the spectral stability of

asymptotically constant solutions is (in general) characterized completely by its point

spectrum in L2(R).

As an elementary example, consider the nonlinear reaction diffusion equation

ut = uxx − f(u) (1.6)

where f is sufficiently smooth, and suppose that u(x, t) = u(x) is a solitary wave

solution. Then it is easily seen that such solutions are spectrally stable if and only if
8For Hamiltonian systems, as the ones studied in this thesis, the essential spectrum is usually seen

to lie on Ri.

7



Figure 1.1: If u is a front, as in the left figure, then ux > 0 for all x and hence such
solutions of the reaction-diffusion equation (1.6) spectrally stable. If u is a pulse, as in
the right figure, then ux is clearly not the ground state and hence such solutions are
unstable.

they are monotone [25]: as a result, fronts are stable but pulses are not (see Figure .1).

To see this, notice that if we linearize about u we obtain the equation

vt = vxx − f ′(uc)v

considered on L2(R). Since this equation is autonomous in time, taking the Laplace

transform in time leads to the spectral problem

Lv = µv

on L2(R), where L := ∂2
x − f ′(uc). Notice that L is a self-adjoint operator on L2(R)

and is a relatively compact perturbation of the negative operator ∂2
x. By translation

invariance, it is clear that ux belongs to the kernel of L and hence µ = 0 is an L2

eigenvalue. If the profile u is monotone, it follows that ux does not vanish on R and

hence µ = 0 is the ground-state eigenvalue of L (see Theorem 11.8 in [47]). It follows

that the set spec(L) does not intersect the open right half plane and hence one has

spectral stability in this case. Similarly, if u is not monotone, then ux will have at

least one zero on R and hence µ = 0 is not the ground state eigenvalue in this case. It

follows that the ground state eigenvalue of L must be positive, which implies spectral

instability.
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The nonlinear stability of asymptotically constant solutions has also been the subject

of great study over the last century. To discuss the relevant results, we now restrict

ourselves to the generalized KdV equation (1.3). The solitary wave solutions of the

form u(x, t) = uc0(x − c0t) of this equation are known to be nonlinearly stable if the

functional

d(c) = E(uc) + c0P(uc)

is convex at c0, where E is the corresponding Hamiltonian and P denotes the square of

the L2 norm. The proof is quite technical and will not be reproduced here. The main

point to note are that there is a one parameter family of solitary waves parameterized

by the wave speed c since the translation invariance can be modded out9. Thus, the

functional d can be considered as acting on the set of (equivalence classes of) solitary

wave solutions of (1.3). By construction, c0 is a critical point of d and hence convexity

at c0 is equivalent to the condition that d has a local minimum at c0. Moreover,

the functional P is conserved under the gKdV flow, and hence one could interpret this

stability condition as saying that such a solution is nonlinearly stable if the Hamiltonian

E restricted to the manifold X0 := {u ∈ L2(R) : P(u) = P(uc0)} has a local minimum

at uc0 : the wave speed c0 present in the definition of d(c) acts as a Lagrange multiplier

for this minimization problem.

The corresponding nonlinear instability theory follows the same lines: the solitary

wave solution uc0 of (1.3) is nonlinearly unstable if the functional d is concave at c0, i.e.

if d′′(c0) < 0. It follows that the solution uc0 is a local maximum of the Hamiltonian

E restricted to the manifold X0. Stability along the transition curve d′′(c0) = 0 is a

more delicate issue and will not be discussed here. Thus, assuming that the wavespeed

c0 is such that d′′(c0) 6= 0, it follows that the corresponding solitary wave solution of

(1.3) will be nonlinearly stable if and only if d′′(c0) > 0. This point is important for

understanding the work presented in this thesis: in order to determine certain notions

of stability, one must often require that particular non-degeneracy conditions are met.

In our case of periodic traveling wave solutions of (2.1), we will have a corresponding
9This is usually done by requiring ux(0) = 0.
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non-degeneracy condition: such a condition is to be expected by the above comments.

In the case of the gKdV, it is possible to use the explicit structure of the equation

to show that

d′′(c0) =
∂

∂c
P(uc)

∣∣
c=c0

.

Thus, the nonlinear stability of such a solution is determined by whether the momentum

of the wave is an increasing function of the wave speed at c0. What is remarkable here

is that the nonlinear stability criterion can be formulated in terms of the derivative of

a conserved quantity of the gKdV flow in terms of the single parameter (modulo trans-

lations) which parameterizes the family of solitary waves. In particular, this condition

is geometric in nature: the non-degeneracy condition that d′′(c0) 6= 0 is equivalent to

requiring that c0 is not a critical point of the function c 7→ P(uc). As a result, the

mapping c 7→ P(uc) is a diffeomorphism of a neighborhood of c0 onto a neighborhood

of P(uc0), and hence solitary waves uc with |c − c0| ¿ 1 can be locally parameterized

by the momentum instead of the wave speed and the stability index d′′(c0) is precisely

the Jacobian of this map at c0. This geometric formulation of the above nonlinear

stability index will serve as a model for the analysis present throughout this thesis:

all stability indices will be shown to be expressible in terms of the Jacobians between

parameters which define the periodic traveling wave solutions and the corresponding

conserved quantities of the gKdV flow.

In the case of nonlinear instability of a solitary wave solution of (1.3), it was shown

by Pego and Weinstein [56, 57] that the mechanism behind this instability is that as

one crosses the transition curve ∂
∂cP(uc) = 0 from a region of stability to a region

of instability, two real eigenvalues of the linearized operator ∂xL bifurcate from the

origin in a pair symmetric to the imaginary axis. Unlike the case of finite-dimensional

Hamiltonian systems, however, this bifurcation does not result from a pair of imaginary

eigenvalue colliding at the origin and bifurcating. Their proof is based on the Evans

function framework put forward by Evans [21, 22, 23, 24], and the relevant points will

be outlined in chapter 3. As we will see, the corresponding theory in the periodic case

developed in chapters 2, 3, and 4 yields precisely such a dichotomy, assuming the non-
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degeneracy condition is met, in the case of the KdV. In particular, in chapter 3 we

show such solutions of the KdV one either has orbital stability or spectral instability

assuming, of course, the non-degeneracy condition is met.

1.2 Periodic Stability Theory

We now move on to discuss elements of periodic stability theory and the spectral stability

techniques used throughout this thesis. We are concerned with the stability theory of

periodic traveling wave solutions to various classes of non-linear PDE’s of the form

Dut = N(u), (x, t) ∈ R× R, (1.7)

where D is an invertible operator and N is a non-linear differential operator, both

considered on the real Hilbert space L2(R). In particular, we will be most interested in

the case when N(u) is a third order operator and (1.7) is dispersive and the flow induced

by (1.7) admits (at least) three conserved quantities: such equations include the gKdV,

gBBM, and the gCH equations. Upon linearizing about such a T -periodic solution, i.e.

calculating the Frechet derivative at the T -periodic traveling wave solution, and taking

the Laplace transform in time one encounters a spectral problem on L2(R) of the form

N ′(u)v = µDv, (1.8)

where N ′(u) is a linear operator with periodic coefficients. It follows that this thesis

deals primarily with the spectral theory for linear operators with periodic coefficients.

In order to understand the nature of such spectra, this section is devoted to reviewing

the basic results of Floquet theory and the periodic Evans function.

Since the operator A := D−1N ′(u) has T -periodic coefficients the spectrum is best

described using Floquet’s theorem, which we now state.

Theorem 1 (Floquet’s Theorem). Let Φ(x) be a fundamental solution matrix for the
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T -periodic first order system on Rn

ẏ = A(x)y, x ∈ R, (1.9)

i.e. the columns of the matrix Φ(x) are linearly independent for each x ∈ R and each

column is a (vector) solution to the system (1.9). Define the associated matrix operator

M = Φ(T )Φ(0)−1. If λ ∈ C is an eigenvalue of M, and µ ∈ C is such that eµT = λ,

then there is a non-trivial solution of (1.9) of the form

y(x) = eµxp(x)

where p is a T -periodic function. Moreover, every solution of (1.9) can be written in

this way.

The matrix M in mentioned in Floquet’s theorem is known as the monodromy oper-

ator, or the period map, of the T -periodic system (1.9). The proof of Floquet’s theorem

is well known and can be found in [17] for example. In contrast to the solitary wave

case, the spectrum of the linearization about a periodic wave is completely essential

and coincides with the continuous spectrum. Indeed, notice that it follows from Flo-

quet’s theorem that the point spectrum of an operator with periodic coefficients acting

on L2(R) is empty: if ψ is a solution of the (1.9), it follows from Floquet’s theorem

that there exists a µ ∈ C and a T -periodic function p such that ψ(x) = eµxp(x). In

particular, for any N ∈ Z we have

ψ(NT ) = eNµT p(0) = λNp(0)

where λ = eµT is an eigenvalue of M. If the solution ψ(x) decays as x → ∞ it

immediately follows that it must be unbounded as x → −∞, from which our claim

follows. Moreover, since A† also has periodic coefficients and is defined on L2(R), it

follows that the point spectrum of A† is empty and hence the residual spectrum of A
is empty. Thus, the spectrum of the operator A is completely essential and coincides
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with the continuous spectrum. Moreover, one could use a variant of Weyl’s theorem to

conclude that µ ∈ spec(A) if and only if there exists a non-trivial uniformly bounded

solution of the equation Av = µv (see page 140 of [36]). Thus, the set spec(A) consists

entirely of L∞(R) eigenvalues.

From the above remarks, it follows that solutions of a T -periodic first order system

of the form (1.9) are stable (in the sense of Lyapunov) if and only if the monodromy

matrix M has an eigenvalue on the unit circle, which we denote S1. This immediately

leads us to the following definition.

Definition 1. Suppose the eigenvalue problem (1.8) is written as a first order system

as

Yx = H(x, µ)Y

where x ∈ R and Y (x) ∈ R3. The monodromy operator M(µ) is defined to be the map

M(µ) = Φ(T, µ)

where Φ(x, µ) solves the initial value problem

Φx = H(x, µ)Φ, Φ(0, µ) = I

where I is the 3 × 3 identity matrix. We say µ ∈ spec(A) if there exists a non-trivial

bounded function ψ such that Aψ = µψ. Moreover, we say the T -periodic solution

of (1.7) is spectrally stable if and only if the stability spectrum of the corresponding

linearized operator does not intersect the open right half plane in R.

As an immediately corollary of Floquet’s theorem and the above definitions, we have

the following result which will be used heavily throughout this work.

Theorem 2. We have µ ∈ spec(A) if and only if there exists a λ ∈ C such that |λ| = 1

and

det (M(µ)− λI) = 0.
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This theorem allows one to encode the spectrum of the linear operator A as the

solution set to a function of two complex variables. Following Gardner [29, 30] we

define the periodic Evans function D : C × C → C to be the characteristic polynomial

of the corresponding period map, i.e. by the formula

D(µ, λ) = det (M(µ)− λI) .

It follows that µ ∈ spec(A) if and only if D(µ, λ) = 0 for some λ ∈ S1. As a result, we

will frequently work with the function D(µ, eiκ) 10 for (µ, κ) ∈ C×(R/2πZ), but the more

general definition defined on all of C2 is useful for certain analyticity arguments. Notice,

however, that the notation at this point becomes a bit-cumbersome. In particular, since

the L2 spectrum of the linearized operator is completely essential, one must take care

in defining the multiplicity of an element of spec(A). Clearly, one can speak of the

geometric and algebraic multiplicities of the elements of spec(A) as L∞ eigenvalues.

However, these notions are not particularly helpful in our analysis. In order to define

a useful notion of the multiplicity of an element of spec(A), we make the following

definitions.

Definition 2. A point µ ∈ spec(A) is called a λ-eigenvalue of A if |λ| = 1 and λ is an

eigenvalue of the corresponding monodromy matrix M(µ). The geometric λ-multiplicity

of µ is given by the dimension of the kernel of the matrix M(µ) − λI. Moreover, the

algebraic λ-multiplicity of µ is the dimension of the generalized null space of the operator

A acting on the space {v ∈ L2(R) : v(x + T ) = λv(x)}.

Throughout this thesis, we will spend much of our time studying the 1-eigenvalues

of the operator A. Since such elements of spec(A) correspond to eigenvalues in the

space L2
per([0, T ]), we slightly abuse notation and refer to the 1-eigenvalues as “periodic

eigenvalues” of the operator A. Similarly, we refer to the algebraic 1-multiplicity of a

periodic eigenvalue of A as just the periodic multiplicity. In order to make a connection

of these notions of multiplicity to the periodic Evans function, we point out the following
10This is actually the definition of the periodic Evans function introduced by Gardner.
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Theorem of Gardner [29].

Theorem 3. The periodic Evans function D(µ, λ) is analytic in the complex variables

µ and λ. Moreover, for a fixed λ ∈ S1 and µ ∈ spec(A) a λ-eigenvalue, the multiplicity

of the root µ of the function D( · , λ) is precisely the algebraic λ-multiplicity of µ.

The first claim of this theorem is clear. Since ∂µ̄H(x, µ) = 0, it follows that

∂µ̄D(µ, λ) = 0. Similarly, one finds that ∂λ̄D(µ, λ) = 0. The second claim is con-

siderably more complicated and the reader is referred to Proposition 2.5 of [29]: as we

will see shortly, this result is clear for constant coefficient equations. Due to the joint

analyticity of D on the complex variables µ and λ, a basic result from several complex

variable theory immediately yields the following corollary.

Corollary 1. The spectrum spec(A) contains no isolated points in C.

Proof. We recall the following theorem from which the corollary follows: if for fixed λ∗

the function D(µ, λ∗) has a zero of order k at µ∗ and is holomorphic in a polydisc about

(µ∗, λ∗) then there is some smaller polydisc about (µ∗, λ∗) so that for every λ in a disc

about λ∗ the function D(µ, λ) (with λ fixed) has k roots in the disc |µ − µ∗| < δ. For

details see the text of Gunning[34].

As an elementary example, we consider the constant coefficient linear PDE

ut = Auxxx + Buxx + Cux (1.10)

where x, t ∈ R and A,B, C are fixed real constants. This equation takes the form (1.7)

with D = 1 and N(u) = L, where L := A∂3
x+B∂2

x+C∂x. Since N(·) is linear, N ′(u) = L

and hence the stability of a T -periodic stationary solution to (1.10) is governed by the

L2 spectrum of the linear operator L. Now, writing the equation Lv = µv as the

first order system of form (1.9), with H(x, µ) identically equal to the constant (in the

variable x) matrix

H(µ) =




0 1 0

0 0 1

A−1µ −A−1C −A−1B




,
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it follows that for equation (1.10) the monodromy operator can be expressed as M(µ) =

exp (H(µ)T ). Thus, we have the factorization

D(µ, eiκ) = det
(
exp(H(µ)T )− eiκI

)

=
3∏

j=1

(
eωj(µ)T − eiκ

)

where ωj(µ) denotes the eigenvalues of H(µ), i.e. they are roots of the characteristic

equation

Aω3 + Bω2 + Cω − µ = 0. (1.11)

In this case, we see that if D(µ, λ) = 0, then the algebraic λ-multiplicity of µ is equal

to the algebraic multiplicity of λ as an eigenvalue of M(µ). Indeed, it is clear that for

a fixed κ0 ∈ R and µ0 such that D(µ0, e
iκ0) = 0, the algebraic multiplicity of eiκ0 as

an eigenvalue of the matrix M(µ0) is precisely the order of the root µ0 of the equation

D(µ, eiκ0) = 0. Moreover, the geometric eiκ0-multiplicity of µ is precisely the geometric

multiplicity of eiκ0 as an eigenvalue of M(µ0). Thus, in the constant coefficient case it is

clear that the above definitions agree with our more classical definitions of multiplicities

of eigenvalues.

Continuing this example, it follows that the zero set of D consists of all µ ∈ C and

k ∈ R such that (1.11) has a root of the form

ω(µ) = iκ/T (mod 2πi/T ).

Hence, µ ∈ spec(L) if and only if the matrix H(µ) has an eigenvalue on the imaginary

axis. With this motivation in mind, setting λ = iκ/T in the characteristic equation

(1.11) leads to the dispersion relation

iAκ3 + BTκ2 − iCT 2κ + T 3µ = 0,

which recovers the standard characterization of the spectrum of L via the Fourier Trans-
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form (modulo the superfluous factor of the period T ). Since the constants A, B, and

C were assumed to be real, it follows that the underlying periodic wave is spectrally

stable if and only if B ≤ 0. Notice in this example the L2(R) spectrum of the operator

N ′(u) = L is purely continuous, which agrees with Corollary 1.

We are now able to briefly describe the main methods used in the spectral stability

analysis of the operatorA via the periodic Evans function. Suppose we have a T -periodic

solution of (1.7). In the examples we will consider, the operator N will be invariant

under translations in the x-variable. By Noether’s theorem, it follows that µ = 0 belongs

to the set spec(A). Moreover, in each of the these cases we will be able to construct two

other non-trivial bounded solutions of Av = 0, and a linear combination of these can

be taken to be T -periodic. Thus, the function D(µ, 1) will have a root of multiplicity

at least two at µ = 0, i.e. µ = 0 is a periodic eigenvalue of A of 1-multiplicity at least

two. Due to the Hamiltonian nature of equation (1.7), we are also able to explicitly

construct a T -periodic generalized eigenfunction corresponding to µ = 0. Thus, µ = 0 is

a periodic eigenvalue of A of 1-multiplicity at least three. Moreover, this multiplicity is

exactly three assuming a particular non-degeneracy condition is met. From the theory

of branching solutions to nonlinear equations, it follows there will be three branches

of solutions µi(κ), i = 1, 2, 3 which solve the equation D(µ(κ), eiκ) = 0 for κ ∈ R

sufficiently small. That is, the three periodic eigenvalues of A at µ = 0 will bifurcate

from the µ = 0 state when one considers perturbations which are T̃ -periodic with

|T − T̃ | ¿ 1. In general, the three roots can be expressed in terms of a power series

in fractional powers of κ: a Puiseux series. Hence, the spectrum in a neighborhood of

the origin will not in general be analytic in the Floquet parameter κ. To calculate this

expansion to first order, we use develop a perturbation theory appropriate to a Jordan

block to determine the dominant balance of the equation D(µ, eiκ) in a neighborhood

of (µ, κ) = (0, 0). From this, we are able to use a Newton diagram (see Appendix)

to determine the leading order expansion of the roots µi(κ). In the case that the first

order term of the µi has positive real part, it follows that spec(A) has a non-trivial

intersection with the open right half plane in C thus implying exponential instability
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of the underlying periodic wave due to the existence of an exponentially (temporally)

growing eigen-mode of the linearization (Frechet derivative) at the periodic traveling

wave.

This spectral instability in a neighborhood of the origin is what is commonly re-

ferred to as a modulational instability. Since the L∞ eigenfunctions of the linearized

operator represent the admissible perturbations of the underlying wave, it follows that

modulational instability analysis is equivalent to studying the stability of the periodic

wave profile to perturbations of long-wavelength, i.e. slow modulations in the un-

derlying wave11. There is well-developed physical theory along these lines known as

Whitham modulation theory [64, 65]. This theory essentially begins by working with

a corresponding Lagrangian and by noticing that there are two scales to consider: a

slow scale of the perturbation and a fast scale of the oscillation of the underlying wave.

Since the variation in the perturbation is minimal over a single period of the underlying

solution, we can formally average the dynamics of (1.7) over a period. Considering

variations of this average Lagrangian yields a system of equations for the variations of

the free-parameters as functions of the slow variables which is in general hyperbolic.

Modulational stability or instability is then determined by whether the characteristics

for this hyperbolic system are real or complex. While the resulting modulation theory

of Whitham provides formal modulational instability results, most rigorous calculations

along these lines occur only in the completely integrable settings. A future goal of the

modulational instability analysis presented in this thesis is to provide rigorous justifi-

cations of the formal averaging of Whitham theory in the non-integrable setting: while

this thesis presents the rigorous results for the gKdV and related equations, we have

not yet carried out a formal Whitham modulation calculation in this context.

This thesis also concerns the development of a stability theory to perturbations of the

same period as the underlying wave12. Note that since there are no isolated points of the
11The L∞ eigenfunctions of Av = µv with |µ| ¿ 1 correspond to perturbations of the underlying

wave with period close to that of the underlying wave. Thus, on compact intervals of space and time
the perturbation looks co-periodic with the solution, but as one moves farther out in space and time
one sees noticeable variation.

12We will often refer to such perturbations as simply periodic perturbations, with the implication
that we require the period to be that of the underlying wave.
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spectrum, such an instability immediately implies the existence of a curve of spectrum

supported away from zero, and hence a periodic spectral instability immediately implies

a finite-wavelength instability (in analogy with the long-wavelength theory mentioned

above). This theory is developed by first noticing that periodic eigenvalues of ∂xL[u]

are precisely the roots of the function D(µ, 1). As pointed out in chapter 2, such

periodic eigenvalues must either be purely imaginary or real: thus if one is interested

in developing a stability theory to such perturbations, it is enough to consider roots of

the function

D( · ; 1) : R→ R.

By analyzing the function D(µ, 1) for µ ∈ R+, it is clear that if it the values for µ near

the origin and near +∞ have opposite signs, then there are an odd number positive

periodic eigenvalues (counting multiplicity13). It should be clear that this index is a

generalization of the orientation index familiar from the solitary wave theory. Indeed, we

will prove in each of our cases that this index recovers the solitary wave stability theory

in a large period limit: see chapter 3. Although this result is known in many cases

by the results of Gardner, we provide new proofs using simple asymptotic estimates

to determine the sign of the above orientation index in this limit. We also prove this

index is intimately related to the nonlinear stability of the underlying wave to periodic

perturbations14.

1.3 Basic Examples

In this section, we present two elementary examples employing our methods of modula-

tional instability analysis. To begin, consider the modulational stability of a T -periodic

solution of the third order constant coefficient linear system on Rn

ut = Auxxx + Cux

13More precisely, counting the periodic multiplicity, i.e. the algebraic 1 multiplicity.
14Again, by periodic perturbations we mean perturbations which are T -periodic.
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where u(x, t) ∈ Rn for each fixed (x, t) ∈ R2, and A and C are now constant n × n

real matrices. The spectral stability of such a solution is determined by the spectrum

of the linearized operator L = A∂3
x +C∂x acting on L2(R). Since this spectral problem

is invariant under the transformation (x, µ) 7→ (−x,−µ), it follows that the set spec(L)

is symmetric and hence spectral stability is equivalent to the condition spec (L) ⊂ Ri.

Straight forward computations show that the characteristic equation of the correspond-

ing H(x, µ) = H(µ) takes the form

det
(
Aλ3 + Cλ− µI

)
= 0. (1.12)

Thus, D(µ, eiκ) admits the factorization

D(µ, eiκ) =
3n∏

j=1

(
eλj(µ)T − eiκ

)

where the set {λj(µ)}3n
j=1 denotes the 3n roots of (1.12). It follows that µ ∈ spec(L) if

and only if H(µ) has an eigenvalue on the imaginary axis. Setting λ = ik for some k ∈ R
and substituting into the characteristic equation (1.12) yields the dispersion relation

det
(
iAk3 − iCk + µI

)
= 0.

In particular, notice that since (1.12) has a n-fold root of µ = 0 at k = 0, the function

D(µ, 1) has an n-fold root at µ = 0. Hence, µ = 0 is a periodic eigenvalue of L of

periodic-multiplicity n. A simple calculation for the n roots of (1.12) bifurcating from

µ(0) = 0 yields the following asymptotic expansion:

µj(k) = 0− icjk +O(k2).

where the cj represent the eigenvalues of the matrix C. In particular, notice that in

this case the n roots µj are analytic in the variable λ. Recalling that k ∈ R and that

the matrix C is real, it follows that a necessary condition for stability in this setting is

the hyperbolicity of the matrix C, i.e. σ(C) must be real.
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As a slightly more sophisticated example, which is more in line with the modulational

stability analysis in this thesis, consider a smooth T -periodic stationary solution u(x)

of the second order reaction-diffusion equation

ut = uxx − f(u), (1.13)

where f is sufficiently smooth (f ∈ C2(R) for example)15. This equation takes the

general form (1.7) with D = −1 and N(u) = −uxx + f(u): although this equation is

not dispersive, it provides a nice model example on which to base the spectral stability

theory of the present work. Linearizing around u and taking the Laplace transform in

time leads to a spectral problem of the form Lv = µv considered on L2(R), where L is

the operator 16

L := N ′(u) = −∂2
x + f ′(u)

with densely defined domain C∞(R). It is clear by integration by parts that L is

symmetric on L2(R). Moreover, since u is clearly bounded on R, it follows that L is a

self-adjoint operator on L2(R), and hence its spectrum is purely real. It follows that u

will be a spectrally stable solution of (1.13) if and only if

spec(L) ⊂ R+ = {λ ∈ R : λ ≥ 0}.

However, this is easily seen not to be the case unless f ′(u) ≡ 0: by differentiating

(1.13) with respect to x implies that Lux = 0, and hence µ = 0 is a periodic eigenvalue

of L. Since ux vanishes at some point on [0, T ], it can not correspond to the ground

state eigenvalue and hence one has spectral instability in this case. Even with this

in mind, we can still ask meaningful stability questions. In particular, we can seek

conditions for such a solution to be modulationally stable, i.e. conditions to ensure that
15In order for periodic solutions of (1.13) to exist, slightly more must be assumed. By simple phase

plane analysis, such solutions exist if and only if f has a local maximum at some point in R. We will
return to this point at the end of this section, but for now we assume that such a solution exists, and
hence f satisfies any hypothesis needed to make this assumption valid.

16Notice that we have changed notations from the analogous example in section 1.1. This does not
make a large difference in the resulting stability theories, and makes L a relatively compact perturbation
of the positive operator −∂2

x.
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spec(L)∩B(0, R) ⊂ R+ for some sufficiently small R > 0. By defining a(µ) = tr (M(µ)),

where M(µ) is the monodromy map corresponding to the spectral problem Lv = µv,

it is then clear from Theorem 5 from chapter 2 that this solution is modulationally

unstable if and only if the sign of a′(0) is such that spec(L) intersects the negative real

axis near µ = 0. Although this trivially follows from the Theorem 5, we now prove the

following theorem using the periodic Evans function techniques outlined in the previous

section in order to give the reader a feeling for the analysis present throughout this

thesis.

Theorem 4. A T -periodic smooth solution of (1.13) is modulationally stable if and

only if a′(0) < 0.

To prove this theorem, notice that if we write (2.20) as a first order system of form

(1.9) with

H(x, µ) =




0 1

f ′(u)− µ 0


 .

Since tr(H(x, µ)) = 0 for all x ∈ R and µ ∈ C, it follows that det(M(µ)) = 1 for all

µ ∈ C where M(µ) is the corresponding monodromy operator. Since ux is periodic with

the same period as u, it follows that there is an invertible matrix V and a real number

σ such that

V M(0)V −1 =




1 σ

0 1


 .

Thus, generically, 1 is an eigenvalue of M(0) of algebraic multiplicity two and geometric

multiplicity one. Using the analyticity of M(µ) near µ = 0, we can expand the periodic

Evans function case near (µ, λ) = (0, 1) as

D(µ, λ) = det (M(µ)− I− ηI)

= η2 − (a(µ)− 2)η + b(µ) (1.14)

where η = λ − 1, a(µ) = tr(M(µ)), and b(µ) = det(M(µ) − I). Our first goal is to

determine the dominant balance of the equation D(µ, λ) in a neighborhood of (µ, λ) =
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(0, 1). To this end, we use the specific structure of the linearized operator L to prove

that a(µ) = 2− b(µ) for all µ ∈ C. This follows from the fact that for any fundamental

matrix solution Φ(x) for the system Y ′(x) = H(x, µ)Y (x), with H(x, µ) defined as

above, which satisfies Φ(0) = I one has

Φ(x)† JΦ(x) = J

for all x ∈ R, where J is the standard skew symmetric matrix

J =




0 1

−1 0


 .

To see this, notice that the matrix H0(x, µ) := −JH(x, µ) is self adjoint since µ ∈ R.

Therefore, differentiating the expression Φ(x)† JΦ(x) with respect to x yields

∂x

(
Φ(x)† JΦ(x)

)
= Φx(x)† JΦ(x) + Φ(x)JΦx(x)

= (JH0(x, µ)Φ(x))† JΦ(x) + Φ(x)J (JH0(x, µ)Φ(x))

= −Φ(x)†H0(x, µ)J2Φ(x) + Φ(x)J2 H0(x, µ)Φ(x)

= Φ(x)†H0(x, µ)Φ(x)− Φ(x)H0(x, µ)Φ(x)

= 0.

Since Φ(0) = I by assumption, the claim follows. Therefore, since det(M(µ)) = 1, it

follows that the periodic Evans function satisfies

D(µ, λ) = det
(
M(µ)−1 − λI

)

= λ2 det
(
M(µ)− λ−1I

)

= (λ− 1)2 + (a(µ)− 2)λ(λ− 1) + b(µ)λ2. (1.15)
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Comparing the O(1) terms between (1.14) and (1.15) implies that

a(µ) + b(µ) = 2

as claimed. In fact, this is essentially the only useful information the symmetry M(µ) ∼
M(µ)−† yields, since comparing the O(λ) terms in (1.14) and (1.15) yields a trivial

identity and comparing the O(λ2) yields the same information as the O(1) terms.

By the above identity, and by the analyticity of the functions a and b, it follows that

in a sufficiently small neighborhood of (µ, λ) = (0, 1), the equation D(µ, λ) = 0 has the

asymptotic expansion

η2 − a′(0)ηµ− a′(0)µ− a′′(0)
2

µ2 +O(3) = 0, (1.16)

where O(3) represents terms which are degree three and higher in the variables µ and

η. In order to prove Theorem 4, we distinguish between two cases. First, consider the

case where a′(0) 6= 0. It follows from (1.16) that Dµ(0, 1) 6= 0 and hence µ = 0 is a

simple root of D(µ, 1) = 0, i.e. µ = 0 is a simple periodic eigenvalue of the operator L.

Moreover, using a Newton diagram, it follows that there is a single branch of spectrum

bifurcating from the µ = 0 state which admits the asymptotic expansion

µ(κ) =
−κ

a′(0)
+O(κ2),

where again we used the fact that η = iκ + O(κ2) for |κ| ¿ 1. Thus, it immediately

follows that the periodic solution u of (1.13) exhibits a modulational instability in this

case if and only if a′(0) > 0.

Next, if a′(0) = 0 it follows that µ = 0 is a periodic eigenvalue of L of (periodic)

multiplicity two. Indeed, by (1.16) we see that in this case the function D(µ, 1) has a

root at µ = 0 of multiplicity two. Taking η = iκ +O(κ2) for κ ∈ R, it follows by (1.16)

that there are two branches of spectrum bifurcating from the µ = 0 state which admit
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the asymptotic expansion

µ±(κ) = ±
(−2 sign(a′′(0))

|a′′(0)|
)1/2

κ +O(κ)2.

Since spec(L) ⊂ R, it follows that the quantity a′′(0) must be negative (as predicted

by Theorem 5), and hence one always has modulational instability in this case. This

completes our proof of Theorem 4

By the above analysis, it follows that the quantity a′(0) serves as a “modulational

instability index” in the sense that its sign completely determines the stability of pe-

riodic stationary solutions of (1.13) to perturbations of long-wavelength. This index

can also be described in terms of properties of the solution u: in particular, its period.

Indeed, notice that (1.13) restricted to stationary solutions can be integrated to yield

−1
2
u2

x + F (u) = E (1.17)

for some constant E, where F is a function such that F ′ = f and F (0) = 0. The

constant E is usually interpreted as the “energy” of the corresponding solution of the

ODE. We assume that E is such that the function F (x) has a local maximum greater

than the energy level E, thus guaranteeing the existence of periodic solutions for initial

data sufficiently close to this maximum. We have already seen that ux is a periodic

solution of the equation Lv = 0. We now set u(0) = u− and note that, due to translation

invariance, we may assume that ux(0) = 0 thus factoring out the (continuous) symmetry

group of equation (1.13) restricted to stationary solutions. By differentiating (1.17) with

respect to E we see that ∂
∂E u(x; E) = uE also solves Lv = 0, and hence we may use ux

and uE to explicitly calculate M(0) in a basis. Indeed, defining y1(x) =
(

du−
dE

)−1
uE

and y2(x) = − (f ′(u−))−1 ux(x), it follows from direct calculation that

y1(0) = 1, y2(0) = 0

y′1(0) = 0, y′2(0) = 1

25



Thus, it follows by calculating uE(T ) by the chain rule that we have

M(0) =




1 f(u−)du−
dE TE

0 1




where TE = d
dE T . Notice that differentiating (1.17) with respect to E and evaluating

at x = 0 shows that f ′(u−)du−
dE = 1. Next, using variation of parameters, one can

express d
dµyj and d

dµy′j in terms of the yj and y′j (see [49]). Finally, using the facts

that det(M(0)) = 1 and tr(M(0)) = a(0) = 2, a bit of algebra eventually yields the

expression

a′(0) = sign(y′1(T ))
∫ T

0

(√
|y′1(T )|y2 + sign(y′1(t))

y1(T )− y′2(T )
2
√|y′1(T )| y1

)2

dx.

It now follows directly that

sign
(
a′(0)

)
= sign(TE).

Thus, by our previous work it follows that TE serves as a modulational instability index

for the stationary periodic solutions of equation (1.13), in the sense that such a solution

is modulationally stable if and only if TE < 0. In particular, this shows the modulational

stability of such a solution can be determined by properties of the solution itself17.

Using the above example as a model, we can state our general method for deriving

modulational stability indices for equations of form (1.7)

1. First, determine a basis for the kernel of the operator N ′(u). Use this to under-

stand the Jordan structure of M(0).

2. Using symmetries inherent in the equation (1.7), as well as a perturbation theory

appropriate to a Jordan block, determine the dominant balance of the equation

D(µ, λ) = 0 in a neighborhood of (µ, λ) = (0, 1). This will in general encode
17In chapter 3, we will prove that TE > 0 for a large class of nonlinearities if the solution does not

bound a homoclinic orbit. It follows that such solutions of the reaction-diffusion equation (1.13) are
always modulationally unstable.

26



several branches of spectrum bifurcating from the µ = 0 state as a polynomial in

the spectral parameter µ and the Floquet exponent κ.

3. Analyze the above polynomial to determine conditions which guarantee the spec-

tral branches bifurcating from µ = 0 all remain in the stable closed left half plane

of C.

In the cases we will encounter in this thesis, we will be able to reduce the nth order

stationary traveling wave ODE N(u) − cDux = 0 to quadrature which, by Noether’s

theorem, will generate an n + 1-dimensional manifold of periodic traveling wave solu-

tions. As in the previous example, under this integrability assumption we will be able

to describe the modulational stability index in terms of properties of the underlying

T -periodic solution itself: in particular, we can express it in terms of gradients of the

conserved quantities of the PDE (1.7) and the period. The result is a geometric theory

for modulational stability theory of T -periodic traveling wave solutions for the equa-

tions considered. As mentioned before, most of our analysis can be viewed as rigorous

Whitham modulation theory calculations and so it is not surprising that the resulting

stability indices have a geometric point of view.

It should be noted that there is no analogue of an orientation index for (1.13).

Indeed, by standard asymptotics the monodromy M(µ) satisfies

M(µ) ≈ exp (A∞(µ)T )

where the matrix A∞(µ) is defined by

A∞ =




0 1

−µ 0


 .

The eigenvalues of A∞(µ) are λ±(µ) = ±i
√

µ and hence a(µ) = 2 cos
(
T
√

µ
)
. It follows

that

D(µ, 1) ≈ 2− 2 cos (T
√

µ)
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for µ À 1. In particular, it is clear that the sign of D(µ, 1) does not have a well defined

limit as µ →∞, which is to be expected by Theorem 5. In the dispersive equations we

will consider in this thesis, this limit is guaranteed to exist since it will be shown that

if µ ∈ R is sufficiently large, then µ is not a periodic eigenvalue of the linearization.

28



CHAPTER 2

Spectral Stability Analysis of the Generalized Korteweg-de

Vries Equation

This chapter is devoted to analyzing the spectral stability of a family of periodic travel-

ing wave solutions to the generalized Korteweg-de Vries (gKdV) equation. The methods

used throughout this chapter are quite general and apply to many other equations: we

choose the gKdV mostly because of its simplicity in applying these methods and partly

due to its historical significance in the solitary wave context. In later chapters, we will

examine how these same techniques can be applied to the situations of periodic traveling

wave solutions of the generalized Benjamin-Bona-Mahony and generalized Camassa-

Holm equations. Throughout this chapter, however, we will only be concerned with

developing a spectral stability theory for such solutions of the gKdV.

The goal of this chapter is twofold. First, we develop a spectral instability theory

for stationary periodic traveling wave solutions of the gKdV to perturbations of long

wavelength: so called modulational, or sideband, instability. In particular we are inter-

ested in understanding the role played by the null directions of the linearized operator

in the stability of the traveling wave to perturbations of long wavelength. We develop

an index, which we call the modulational instability index, whose sign gives necessary

and sufficient conditions for spectral instability in a sufficiently small neighborhood of

the origin in the spectral plane (assuming a particular non-degeneracy condition holds).

Secondly, we develop a spectral instability theory for such solutions to perturbations

of the same period. In particular, we develop an index which counts (modulo 2) the

number of non-zero real periodic eigenvalues of the linearized operator. Since the spec-

trum of the linearized operator is continuous, this immediately implies instability with

respect to finite-wavelength perturbations. This index is shown to be a generalization of

the one which governs the stability of the solitary wave, in the sense that through it we
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regain the solitary wave spectral stability theory as the period tends to infinity. Both of

these indices are shown to be expressible in terms of maps between a space of constants

parameterizing the traveling waves and the conserved quantities of the governing PDE.

These two indices together provide a good deal of information about the spectrum of

the linearized operator.

Finally, we sketch the connection of this calculation to a study of the linearized

operator - in particular we perform a perturbation calculation in terms of the Floquet

parameter. This suggests a geometric interpretation attached to the vanishing of the

finite-wavelength instability index previously mentioned.

2.1 Introduction and Preliminaries

In this chapter, we consider the spectral stability of periodic traveling wave solutions

to the generalized KdV (gKdV) equation

ut = uxxx + (f(u))x (2.1)

where f(·) ∈ C2(R) is a suitably smooth nonlinearity satisfying certain convexity as-

sumptions to be discussed later. This equation admits periodic traveling wave solutions

of the form

u(x, t) = u(x + ct), x ∈ R, t ∈ R+

where the wave-speed c is assumed to be positive and u(·) is a periodic function of its

argument. Of particular interest is the case of power law nonlinearity f(u) = up+1,

which in the cases p = 1, 2 represents the equations for traveling wave solutions to the

KdV and MKdV, respectively. Obviously such traveling wave solutions are reducible to

quadrature: they satisfy

uxx + f(u)− cu = a (2.2)

u2
x

2
+ F (u)− c

u2

2
= au + E. (2.3)
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In particular, we are interested in the spectrum of the linearized operator (in the moving

coordinate frame)

µv = vxxx + (vf ′(u))x − cvx

in two related settings. First, we study the spectrum in a neighborhood of λ = 0.

Physically this amounts to long-wavelength perturbations of the underlying wave profile:

in essence slow modulations of the traveling wave. There is a well developed physical

theory, commonly known as Whitham modulation theory[64, 65], for dealing with such

problems. On a mathematical level the origin in the spectral plane is distinguished

by the fact that the ordinary differential equation giving the traveling wave profile is

completely integrable. Thus the tangent space to the manifold of traveling wave profiles

can be explicitly computed, and the null-space to the linearized operator can be built up

from elements of this tangent space. We show that these considerations give a rigorous

normal form for the spectrum of the linearized operator in the vicinity of the origin

providing that certain genericity conditions are met. Assuming that these genericity

conditions are met we are able to show the following: there is a discriminant ∆ which

can be calculated explicitly. If this discriminant is positive then the spectrum in a

neighborhood of the origin consists of the imaginary axis1 with multiplicity three. If

this discriminant is negative the spectrum of the linearization in the neighborhood of the

origin consists of the imaginary axis (with multiplicity one) together with two curves

which leave the origin along lines in the complex plane, implying instability. Long

wavelength theories are invariably geometric in nature, and the one presented here is

no exception: both the instability index and the genericity conditions admit a natural

geometric interpretation.

Secondly, we are interested in determining sufficient conditions for the existence of

unstable spectrum supported away from λ = 0. Here, this is accomplished by calcu-

lating an orientation index using Evans function techniques: essentially comparing the

behavior of the Evans function near the origin with the asymptotic behavior near in-
1Note that this does not imply spectral stability since there is the possibility of bands of spectrum

off of the imaginary axis away from the origin.
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finity. Physically, such an instability amounts to an instability with respect to finite

wavelength perturbations. The derived stability index is a generalization of the one

which governs stability of solitary waves. In fact, in the case of power-law nonlinearity

and wave speed c > 0, we show that in a long wavelength limit the sign of this index

(which is actually what determines stability) agrees with the sign of the solitary wave

stability index derived by, for example, Pego and Weinstein[57, 56].

The work presented in this chapter uses ideas from both stability theory and mod-

ulation theory, and as such there is an extensive background literature. Most obviously

is the stability theory of solitary wave solutions to KdV type equations which was pio-

neered by Benjamin[7] and further developed by Bona[10], Grillakis[31], Grillakis,Shatah

and Strauss[32, 33], Bona, Souganides and Strauss[11], Pego and Weinstein[57, 56],

Weinstein[62, 63] and others. In this theory the role of the discriminant is played by the

derivative of the momentum with respect to wave-speed. Our discriminant is somewhat

more complicated, which is to be expected: as shown in the next section, the solitary

waves homoclinic to the origin are a codimension two subset of the family of periodic

solutions, so one expects that the general stability condition will more complicated.

There are also a number of calculations of the stability of periodic solutions to per-

turbations of the same period, or to perturbations of twice the period, due to Angulo

Pava[3], Angulo Pava, Bona and Scialom[4] and others. In this setting the linearized

operator has a compact resolvent, so the spectrum is purely discrete, and the arguments

are similar in spirit to those for the solitary wave stability. In contrast we consider the

linearized operator as acting on L2(R), which corresponds to localized perturbations,

where one must understand the continuous spectrum of the operator.

A stability calculation in the spirit of modulation theory was given by Rowlands[59]

for the cubic nonlinear Schrödinger equation. Other stability calculations in the same

spirit, but differing greatly in details and approach, were given by Gallay and Hǎrǎguş

[27, 28], Hǎrǎguş and Kapitula [35], Deconinck and Kapitula [19], Bridges and Rowlands

[15], and Bridges and Mielke [5]. The work of Gardner [30] is also related, though it

should be noted that the long-wavelength limit in Gardner is very different from the one

32



we consider here: in the former it is the traveling wave itself which has a long period,

while in our calculation the period is fixed and we are considering perturbations of long

period. The ideas represented in the current chapter owes a debt to the substantial

literature on Whitham theory for integrable systems developed by Lax and Levermore

[43, 44, 45], Flashka, Forest and McLaughlin [26], and many others. We note, however,

that the calculation outlined in this paper is not an integrable calculation. The papers

that are perhaps closest to that presented here are those by Oh and Zumbrun[52, 53, 54]

and Serre [61] on the stability of periodic solutions to viscous conservation laws, where

similar results relating the behavior of the linearized spectral problem in a neighborhood

of the origin to a formal theory of slow modulations are proved.

The results of this chapter are most explicit in the case of power law nonlinearity. In

this case, due to the scaling invariance we can always assume that c ∈ {−1, +1}. Indeed,

it is easy to check that if u(x, t; c) solves (2.1) with the nonlinearity f(u) = up+1, then

|c|1/pu
(
|c|1/2x, |c|3/2t, sgn(c)

)
(2.4)

solves (2.1) with wave speed sgn(c). This scaling induces a natural scaling on the

periodic traveling wave solutions of (2.1), which we are able to exploit in order to

determine asymptotic estimates of the mentioned instability indices in the limit as the

periodic waves approach the homoclinic orbit, i.e. as the period increases to infinity.

The rest of this chapter is organized as follows: in the next section we determine

the basic properties of the periodic traveling wave solutions of (2.1) which will be

used extensively throughout this thesis. In section 2.2, we lay out some basic general

properties of the spectrum of the linearized operator. In the second section we explicitly

compute the monodromy map and associated periodic Evans function at the origin. A

perturbation analysis in the neighborhood of the origin gives a local normal form for the

Evans function. In section 2.3 we develop similar results from the point of view of the

linearized operator: we compute the generalized periodic null-space of the linearized

operator in terms of the tangent space to the ordinary differential equation defining

the traveling wave. The structure of this null-space (under some genericity conditions)
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reflects that of the monodromy map at the origin, and a similar perturbation analysis

gives a local normal form for the spectrum. While the two approaches are in principle the

same some calculations are more easily carried out in one framework than the other: in

general the analysis of the linearized operator seems considerably more complicated than

our approach via the periodic Evans function. Finally, we end with some concluding

remarks.

It should be noted we restrict neither the size of the periodic solution nor the period.

Moreover, all of our analysis applies to both localized and bounded perturbations of the

underlying wave. Also in this chapter “stability” will always means spectral stability.

2.2 Properties of the Stationary Periodic Traveling Waves

In this section, we recall the basic properties of the periodic traveling wave solutions of

(2.1). For each non-zero c ∈ R, a traveling wave solution of (2.1) with wave speed c is

a solution of the traveling wave ordinary differential equation

uxxx + f(u)x − cux = 0, (2.5)

i.e. they are solutions of (2.1) which are stationary in the moving coordinate frame

defined by x + ct. Clearly, such solutions are reducible to quadrature and satisfy

uxx + f(u)− cu = a, (2.6)

1
2
u2

x + F (u)− c

2
u2 − au = E, (2.7)

where a and E are real constants of integration, and F satisfies F ′ = f , F (0) = 0. In

order to ensure the existence of periodic orbits of (2.5), we require that the effective

potential

V (u; a, c) = F (u)− c

2
u2 − au

has a non-degenerate local minimum. Notice this places a restriction on the allowable

parameter regime for our problem. This motivates the following definition.
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Definition 3. We define the set Ω ⊂ R3 to be the open set consisting of all triples

(a,E, c) such that the solution u(x) = u(x; a,E, c) of (2.7) is periodic and its orbit in

phase space does not bound a homoclinic orbit.

Remark 1. Taking into account the translation invariance of (2.1), it follows that for

each (a,E, c) ∈ Ω we can construct a one-parameter family of periodic traveling wave

solutions of (2.1): namely

uξ(x, t) = u(x + ct + ξ; a,E, c)

where ξ ∈ R. Thus, the periodic traveling waves of (2.1) constitute a four dimensional

manifold of solutions. However, this added constant of integration does not play an

important role in our theory. In particular, we can mod out the continuous symmetry of

(2.1) by requiring all periodic traveling wave solutions to satisfy the conditions ux(0) = 0

and V ′(u(0)) < 0. As a result, each periodic solution of (2.5) is an even function of the

variable x.

In order to understand the set Ω, we now characterize this set in the special case of

the KdV equation. In this case, the effective potential takes the form

V (u; a, c) =
1
6
u3 − c

2
u2 − au.

If 2a < −c2, then V ′(u; a, c) is an increasing function of u and hence no bounded

solutions exist. Thus, we must have 2a ≥ −c2. Fix now a positive wave speed c. For

each a > − c2

2 the potential has a (unique) local minima at um = c +
√

c2 + 2a and a

(unique) local maximum at uM = c−√c2 + 2a, and we define the critical energies

E−(a, c) = V (um; a, c) = −c2

3

(
c +

√
c2 + 2a

)
− a

3

(
3c + 2

√
c2 + 2a

)

E+(a, c) = V (uM ; a, c) =
c2

3

(
−c +

√
c2 + 2a

)
+

a

3

(
−3c + 2

√
c2 + 2a

)
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Figure 2.1: The shaded region corresponds to the open set Ω ⊂ R3 restricted to the
hyperplane c = 1 for the KdV equation.

In order to ensure bounded solutions of (2.5), we must then require

E−(a, c) ≤ E ≤ E+(a, c).

We thus have three possibilities for the bounded solutions of (2.5) for fixed a and c:

1. If E = E−(a, c), the corresponding solution is the equilibrium solution

u(x; a,E−(a, c), c) = c.

2. If E = E+(a, c), then either the solution is constant (corresponding to the case

when 2a + c2 = 0) or else is homoclinic to uM as x → ±∞. The classical solitary

wave corresponds to the solution u(x; 0, E+(0, c), c), and hence the solitary waves

form a co-dimension two subset of the set of bounded solutions of (2.5).

3. If E−(a, c) < E < E+(a, c), then the solution u(x; a,E, c) is periodic with minimal

period T (a, E, c).
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Thus, in the case of the KdV equation, the set Ω is given explicitly by

{(a,E, c) ∈ R3 : c > 0, 2a > −c2, E−(a, c) < E < E+(a, c)}

For convenience, the graph of the restriction of this set to the hyperplane {c = 1} is

provided in Figure 2.1. Similar constructions can be used to describe the set Ω, and

hence the set of bounded solutions of (2.5), for general non-linearities.

Throughout this paper, we will always assume that our periodic traveling waves

correspond to an (a,E, c) within the open region Ω, and that the roots u± of E =

V (u; a, c) with V (u; a, c) < E for u ∈ (u−, u+) are simple. It follows that u± are C1

functions of a, E, c on Ω, and that u(0) = u−. Moreover, given (a,E, c) ∈ Ω, we define

the period of the corresponding solution to be

T = T (a,E, c) := 2
∫ u+

u−

du√
2 (E − V (u; a, c))

. (2.8)

The above interval can be regularized at the square root branch points u−, u+ by the

following procedure: Write E − V (u; a, c) = (r − u−)(u+ − r)Q(u) and consider the

change of variables u = u++u−
2 + u+−u−

2 sin(θ). Notice that Q(u) 6= 0 on [u−, u+]. It

follows that du =
√

(u− u−)(u+ − u)dθ and hence (2.8) can be written in a regularized

form as

T (a,E, c) = 2
∫ π

2

−π
2

dθ√
Q

(
u++u−

2 + u+−u−
2 sin(θ)

) .

In particular, we can differentiate the above relation with respect to the parameters a, E,

and c within the parameter regime Ω. Similarly the mass, momentum, and Hamiltonian

of the traveling wave are given by the first and second moments of this density, i.e.

M(a,E, c) = 〈u〉 =
∫ T

0
u(x) dx = 2

∫ u+

u−

u du√
2 (E − V (u; a, c))

(2.9)

P (a,E, c) = 〈u2〉 =
∫ T

0
u2(x) dx = 2

∫ u+

u−

u2 du√
2 (E − V (u; a, c))

(2.10)

H(a,E, c) =
〈

u2
x

2
− F (u)

〉
= 2

∫ u+

u−

E − V (u; a, c)− F (u)√
2 (E − V (u; a, c))

du. (2.11)
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Notice that these integrals can be regularized as above, and represent conserved quan-

tities of the gKdV flow restricted to the manifold of periodic traveling wave solutions.

In particular one can differentiate the above expressions with respect to the parameters

(a,E, c). Notice that in the derivation of the gKdV [5], the solution u can represent

either the horizontal velocity of a wave profile, or the density of the wave. Thus, the

functional M can be interpreted as a “mass” since it is the integral of the density over

space. Similarly, the functional P can be interpreted as a “momentum” since it is the

integral of the density times velocity over space.

Throughout this paper, a large role will be played by the gradients of the above

conserved quantities. However, by the Hamiltonian structure of (2.5), the corresponding

derivatives of the period, mass, and momentum restricted to a periodic traveling wave

u(·; a,E, c) with (a,E, c) ∈ Ω are related as they arise as the elements of the Hessian of

a scalar function. In particular, if we define the classical action

K(a,E, c) =
∮

ux du =
∫ T

0
u2

x dx = 2
∫ u+

u−

√
2(E − V (u; a, c)) du (2.12)

(which is not itself conserved under the ODE flow induced by (2.5)) the derivative of

this map as a function K : Ω → R is given explicitly by

Da,E,cK(a,E, c) =
(

M(a,E, c), T (a,E, c),
1
2
P (a,E, c)

)
,

where Da,E,c =
〈

∂
∂a , ∂

∂E , ∂
∂c

〉
. This is easily verified by differentiating (2.12) and recalling

that E−V (u±; a, c) = 0. Moreover, using the fact that T, M, P, and H are C1 functions

of parameters (a,E, c) on the domain Ω, we have the following relationship between the

gradients of the conserved quantities of the gKdV flow restricted to the periodic traveling

waves:

E Da,E,c(T ) + a Da,E,c(M) +
c

2
Da,E,c(P ) + Da,E,c(H) = 0. (2.13)

Indeed, notice that by integrating (2.7) over the interval [0, T (a,E, c)] yields

1
2
K +

∫ T

0
F (u(x))dx =

c

2
P + aM + ET. (2.14)
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Moreover, from the definition of the Hamiltonian H(a,E, c), it is clear that

1
2
K −

∫ T

0
F (u(x))dx = H. (2.15)

Thus, adding equations (2.14) and (2.15) and taking the partial derivatives with respect

to a, E, and c yields




Ta Ma Pa Ha

TE ME PE HE

Tc Mc Pc Hc







E

a

c
2

1




=




0

0

0

0




from which (2.13) follows. Thus, although the subsequent theory is developed most

naturally in terms of the quantities T , M , and P , it is possible to restate our results

in terms of M , P and H so long as E 6= 0: this is desirable since these have a natural

interpretation as conserved quantities of the partial differential equation (2.1).

We now discuss the parametrization of the periodic solutions of (2.5) in more de-

tail. A major technical necessity throughout this paper is that the constants of mo-

tion for the PDE flow defined by (2.1) provide (at least locally) a good parametriza-

tion for the periodic traveling wave solutions. In particular, we assume for a given

(a,E, c) ∈ Ω that the conserved quantities (H, M,P ) are good local coordinates for the

periodic traveling waves near (a,E, c). More precisely, we assume the map (a,E, c) →
(H(a, E, c),M(a,E, c), P (a,E, c)) has a unique C1 inverse in a neighborhood of (a,E, c).

If we adopt the notation

{f, g}x,y =

∣∣∣∣∣∣∣
fx gx

fy gy

∣∣∣∣∣∣∣

for 2× 2 Jacobians, and {f, g, h}x,y,z for the analogous 3× 3 Jacobian, it follows this is

possible exactly when {H, M, P}a,E,c is non-zero, which is equivalent to {T,M,P}a,E,c 6=
0 if E 6= 0 by (2.13). This non-degeneracy condition will be shown to hold for power-law

nonlinearities f(u) = up+1 in a neighborhood of the solitary wave (a,E, c) = (0, 0, c)
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if and only if p 6= 4: at p = 4, {T, M, P}a,E,c switches signs near the solitary wave.

We will see that this sign change signals the switch from stability to instability in the

solitary wave setting, and we will relate the vanishing of {T, M, P}a,E,c to the structure

of the generalized periodic null-space of the linearized operator.

2.3 Linearization and Floquet Theory

We now begin our study of spectral stability of the periodic waves u(x) = u(x; a,E, c)

under small perturbation. To this end, suppose (a, E, c) ∈ Ω and consider a small

perturbation of the periodic wave u(x; a,E, c) of the form

ψ(x, t; a,E, c) = u(x; a,E, c) + εv(x, t) +O(ε2),

where 0 < |ε| ¿ 1 is a small parameter. Substituting this into (2.1) and collecting the

O(ε) terms yields the linearized equation ∂xL[u]v = −vt, where L[u] := −∂2
x− f ′(u)+ c

is a linear differential operator with periodic coefficients. As the linearized equation is

autonomous in time, we seek separated solutions of the form v(x, t) = e−µtv(x), which

yields the spectral problem

∂xL[u]v = µv. (2.16)

Note that we consider the linearized operator ∂xL[u] as a closed linear operator acting on

a Banach space X with domain D(∂xL[u]). In literature, several choices for X have been

studied, each of which corresponding to different classes of admissible perturbations

v. In our case, we consider X = L2(R;R) and D(∂xL[u]) = H3(R), corresponding

to spatially localized perturbations. As mentioned in the introduction the resulting

spectrum is purely continuous, which is a serious impediment to implementing many of

the stability techniques familiar from solitary wave theory. Indeed, if we consider the

linearized operator ∂xL[u] as acting on L2
per([0, T ];R), then the resolvent is a compact

operator and hence the spectrum consists of isolated eigenvalues of finite-multiplicity.

However, by considering L2(R;R), the spectrum is purely continuous and consists of no
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isolated eigenvalues of finite multiplicity. This fact is usually avoided all together by

implementing a Floquet-Bloch decomposition of the linearized operator: we will outline

this approach in section 2.6. However, the main approach taken in this work is to utilize

the integrable structure of the traveling wave ODE (2.5) in order to explicitly construct

the tangent space to the manifold M of periodic traveling wave solutions of (2.1), i.e.

M = {g( · ; a,E, c) : g solves (2.5) and (a,E, c) ∈ Ω},

at u( · ; a,E, c), and to utilize perturbation theory to determine the structure of the

spectrum in a sufficiently small neighborhood of the origin.

In order to understand the structure of the spectrum of ∂xL[u], we the following

definitions familiar from Floquet theory.

Definition 4. The monodromy matrix M(µ) associated to the spectral problem (2.16)

is defined to be the period map

M(µ) = Φ(T, µ),

where Φ(x, µ) satisfies the initial value problem

Φx = H(x;µ)Φ, Φ(0, µ) = I (2.17)

with I the 3× 3 identity matrix and

H(x; µ) =




0 1 0

0 0 1

−µ− uxf ′′(u) −f ′(u) + c 0




.

As mentioned in section 1.2, it follows that the spectrum of the linearized operator

∂xL[u] acting on L2(R) is entirely essential and coincides with the continuous spectrum.

In particular, it follows by a variant of Weyl’s theorem that µ ∈ spec(∂xL[u]) if and only

if there exists a non-trivial uniformly bounded solution of the equation ∂xL[u]v = µv.
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This leads us to the following definition.

Definition 5. We say µ ∈ spec(∂xL[u]) if there exists a non-trivial bounded function

ψ such that ∂xL[u]ψ = µψ or, equivalently if there exists a λ ∈ C such that |λ| = 1 and

det[M(µ)− λI] = 0.

Moreover, we say the periodic solution u(x; a,E, c) is spectrally stable if spec(∂xL[u])

does not intersect the open right half plane.

Notice that due to the Hamiltonian nature of the problem, spec(∂xL[u]) is symmetric

with respect to reflections across the real and imaginary axes. Thus, spectral stability

occurs if and only if spec(∂xL[u]) ⊂ Ri. Following Gardner [29, 29], we define the

periodic Evans function for this problem to be

D(µ, λ) = det (M(µ)− λI) . (2.18)

It follows that µ ∈ spec(∂xL[u]) if and only if there exists a λ ∈ S1 such that D(µ, λ) = 0.

A brief outline of the basic properties of this function was given in section 1.2 of the

introduction. In particular, recall that D(µ, λ) is analytic in the complex variables µ and

λ, and that for a fixed λ0 ∈ S1 the multiplicity of a root of the equation D(µ, λ0) = 0 is

exactly the algebraic λ0-multiplicity of the λ0-eigenvalue µ. Throughout this thesis, we

will be primarily concerned with the periodic eigenvalues of ∂xL[u], which corresponds

to the solutions of the equation D(µ, 1) = 0. In this case, the multiplicity of a root

of D(µ, 1) = 0 is precisely the dimension of the generalized periodic null-space of the

linearized operator ∂xL[u].

Since we are primarily concerned with roots of D(µ, λ) with λ on the unit circle

we will frequently work with the function D(µ, eiκ), which is actually the function

considered by Gardner. It follows that the set spec(∂xL[u]) consists of precisely the

L∞ eigenvalues of the linearized operator ∂xL[u]. Moreover, if we define a projection

operator π1 : C× R→ C by π1(z1, z2) = z1 for (z1, z2) ∈ C× R, then the projection of

the zero set of D(µ, eiκ) in C× R via π1 is precisely the set spec(∂xL[u]).
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As we will see below, it follows from the integrable structure of (2.16) that the

function D(µ, 1) has a zero of multiplicity (generically) three at µ = 0. As λ = eiκ

varies on S1 there will be in general three branches µj(κ) of roots of D(µj(κ), eiκ) for

κ small which bifurcate from the origin. Assuming these branches are analytic2 in κ, it

follows that a necessary condition for spectral stability is thus

∂

∂κ
µj(κ)

∣∣
κ=0

∈ Ri. (2.19)

This observation leads us to the use of perturbation methods in the study of the spec-

trum of ∂xL[u] near the origin, i.e. modulational instability analysis of the underlying

periodic traveling wave. As we will see, the first order terms of a Taylor series ex-

pansion of the three branches µj(κ) can be encoded as roots of a homogeneous cubic

polynomial, and hence spectral stability is determined by the sign of the associated

discriminant. Moreover, it follows by the Hamiltonian structure of (2.16) that in fact

spec(∂xL[u]) ⊂ Ri if (2.19) holds and the branches are distinct.

The main technical result we need to ensure the analyticity of the spectrum bifur-

cating from the µ = 0 state is that the Hamiltonian structure of the linearized operator

implies the operators M(µ) and M(−µ)−1 are related in a very specific way. This is

the content of the following lemma.

Lemma 1. The matrices M(µ) and M(−µ)−1 are similar.

Proof. The idea of this proof is clear: the spectral problem ∂xL[u]v = µv is invariant

under the transformation (x, µ) → (−x,−µ): this is a reflection of the Hamiltonian

structure of the linearized operator ∂xL[u]. To prove this from a rigorous framework,

notice from the form of the operator L[u], we know that if µ ∈ spec(∂xL[u]) with

∂xL[u]g(x) = µg(x), it follows that ∂xL[u]g(−x) = −µg(−x). Thus, using the notation

of (2.17), it follows that Φ(x,−µ) ∼ Φ(−x, µ). The lemma follows by evaluating at

x = T .
2In general, for each j, the theory of branching solutions of non-linear equations guarantees the

existence of a natural number mj such that µj(·) is an analytic function of κ1/mj . As we will see in
our case, the Hamiltonian nature of the linearized operator ∂xL[u] assures that mj = 1, and hence the
roots are in fact analytic functions of the Floquet parameter.
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While it is possible to prove analyticity of the spectrum near µ = 0 with out the

use of Lemma 1 by using variation of parameters, we find that the Lemma 1 is useful

in understanding the mechanism behind this highly non-generic bifurcation.

The goal of this chapter is to determine various asymptotic expansions of the periodic

Evans function. In the next section, we will study the asymptotics of (2.18) as µ →∞.

This will provide information about the global structure of the spectrum of the linearized

operator ∂xL[u], as well as providing us with a finite wavelength instability index which

counts modulo 2 the number of intersections of the spectrum with the positive real

axis. We then study the asymptotics of (2.18) in the limit (µ, κ) → (0, 0), which yields

a “modulational stability index” in terms of the derivatives of the monodromy operator

at the origin.

2.4 Global Structure of spec(∂xL[u]) and spec (L[u])

In this section, we review some basic global features of the spectrum of the linear

operators L[u] and ∂xL[u] which are useful in a local analysis near µ = 0, as well as the

global analysis. We also state some important properties of the Evans function D(µ, λ)

which are vital to the foregoing analysis.

We begin with analyzing the spectrum of the operator L[u]. As this is a self adjoint

Hill-type operator with periodic coefficients, it follows the spectrum on L2(R) is real

and purely continuous. Moreover, we have the following theorem concerning the global

structure of the set spec(L[u]).

Theorem 5 (Oscillation Theorem). To every differential equation of the form

−∂2
xv + Q(x)v = µv, (2.20)

where Q(x) is a T -periodic function of x, there belong two monotonically increasing

infinite sequences of real numbers {λj}∞j=0 and {λ′j}∞j=1 such that (2.20) has a solution

of period T if and only if µ = λj and an anti-periodic solution of period 2T (i.e. a

solution φ such that φ(x + T ) = −φ(x)) if and only if µ = λ′j. These sequences satisfy
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the inequalities

λ0 < λ′1 ≤ λ′2 < λ1 ≤ λ2 < λ′3 ≤ λ′4 < λ3 ≤ λ4 < . . .

as well as the relations limj→∞ λ−1
j = limj→∞(λj)′−1 = 0. Moreover, if m(µ) is the

corresponding monodromy operator, define the function a(µ) = tr( m(µ)). Then the

function a(µ) satisfies the following properties:

1. {µ ∈ R : a(µ) = 2} = {λj}∞j=1 and {µ ∈ R : a(µ) = −2} = {λj}∞j=1

2. a(µ) > 2 for all µ < λ0.

3. One has a′(µ) < 0 on (λj , λ
′
j+1) for j ≥ 0 and a′(0) > 0 on (λ′j , λj−1) for j ≥ 1.

In particular, the solutions of (2.20) are stable if a(µ) ∈ (−2, 2) and are stable at µ = λj

if and only if a′(λj) = 0, in which case one has a′′(0) < 0. Similarly, the solutions (2.20)

are stable at µ = λ′j if and only if a′(λ′j) = 0, in which case one has a′′(0) > 0.

The proof of this result is well known and can be found in many texts on the subject:

see for example [49]. As a result, we have the following non-degeneracy condition which

states conditions on the nonlinearity for the map E → T (a0, E, c0) to be invertible for

a fixed (a0, c0) such that (a0, E, c0) ∈ Ω.

Lemma 2. Let (a0, E0, c0) ∈ Ω and u = u( · ; a0, E0, c0) denote the corresponding

periodic solution of (2.5) with wave speed c0 and period T = T (a0, E0, c0). If the non-

linearity f in (2.1) is such that f ′(u) is co-periodic with u, then TE > 0 at (a0, E0, c0).

The proof of this lemma will be postponed until the next chapter where it is more

natural: it requires a more detailed analysis of the periodic spectrum of the linear

operator L[u] (see Lemma 10). In particular, this lemma guarantees that TE > 0 for

all (a,E, c) ∈ Ω if f(u) = up+1 for some p ≥ 1. In Lemma 10 of Chapter 3, we will see

this implies that µ = 0 is a simple T -periodic eigenvalue of L[u], and that this operator

has exactly one negative eigenvalue. By Theorem 3.1 of [57], it follows that for such

nonlinearities the number of unstable T -periodic eigenvalues of ∂xL[u] with positive
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real part can be at most one. Since the spectrum of the linearized operator ∂xL[u] is

symmetric about the real and imaginary axis, it follows that all unstable eigenvalues of

the operator ∂xL[u] acting on the space L2
per([0, T ]) are real. This important observation

will play a large role in understanding the orientation index derived in section 2.5, and

will also play a large role in understanding the orbital stability of such solutions to

T -periodic perturbations conducted in Chapter 3.

Next, we prove some basic properties of the spectrum of the linearized operator

∂xL[u] considered on L2(R).

Proposition 1. The spectrum spec (∂xL[u]) has the following properties:

• There are no isolated points of the spectrum. In particular, the spectrum consists

of piecewise smooth arcs.

• The entire imaginary axis is contained in the spectrum, i.e. Ri ⊂ spec(∂xL[u]).

Further for |µ| sufficiently large along the imaginary axis the multiplicity is one,

i.e. the multiplicity of the root D(·, λ(·)) = 0 is one.

• R ∩ spec(∂xL[u]) consists of a finite number of points. In particular there are no

bands on the real axis.

Proof. The first claim, that the spectrum is never discrete, was given in the introduction.

Notice that it is clear from the implicit function theorem that µ is a smooth function

of λ as long as ∂D
∂µ = tr(coft(M(µ) − λI)M′

µ) 6= 0, where cof represents the standard

cofactor matrix. Moreover, since D(µ, λ0) is analytic in µ for a fixed λ0, it follows

that, in general, the spectrum will consist of piecewise smooth curves. We will show

directly later that the spectrum is in fact an analytic function of λ on S1, at least in a

neighborhood of the origin.

The second claim is an easy symmetry calculation. First, notice from the definition

of H(x, µ) in (2.17) that tr(H(x, µ)) = 0 for all x ∈ R, µ ∈ C. Thus, Abel’s formula

implies that

det(Φ(x, µ)) = exp
(∫ x

0
tr(H(x, µ))dx

)
det(Φ(0, µ))

46



and hence det(M(µ)) = 1 for all µ ∈ C. Thus, it is possible to find functions a, d : C→
C such that

D(µ, λ) = −λ3 + a(µ)λ2 + d(µ)λ + 1

for all µ, λ ∈ C. In particular, notice that a(µ) = tr(M(µ)). By Lemma 1 it follows

that

det[M(−µ)− λI] = det[M−1(µ)− λI]

= −λ3 det[M−1(µ)] det[M(µ)− λ−1]

= −λ3
(−λ−3 + a(µ)λ−2 + d(µ)λ−1 + 1

)

= −λ3 − d(µ)λ2 − a(µ)λ + 1

and hence we have the identity d(µ) = −a(−µ) for all µ ∈ C.

Now, since the entries of the matrix H(x, µ) are real for µ ∈ R, it follows that

M(µ) is a real matrix on the real axis. Thus, its eigenvalues are either real or occur in

complex conjugate pairs, and hence a(µ) is real on the real axis. It follows from Schwarz

reflection that for µ ∈ Ri, we have a(−µ) = a(µ) = a(µ) and the Evans function takes

the form

D(µ, λ) = −λ3 + a(µ)λ2 − a(µ)λ + 1,

from which it follows that

D(µ, λ) = −λ3D
(
µ;

(
λ
)−1

)

for all µ, λ ∈ C. Hence for imaginary µ the eigenvalues of the monodromy are symmetric

with respect to the unit circle with the same multiplicities. Since the monodromy has

three eigenvalues, it follows that at least one must lie on the unit circle and hence

Ri ⊂ spec(∂xL[u]) as claimed.

To see that the multiplicity of the spectrum on the imaginary axis is eventually one,
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we note that by standard asymptotics the monodromy M(µ) satisfies

M(µ) ≈ eA(µ)T for |µ| À 1,

where A(µ) is defined by

A(µ) =




0 1 0

0 0 1

−µ 0 0




.

The three eigenvalues of eA(µ)T are given by

λ1 = e−µ1/3T , λ2 = e−µ1/3ωT , and λ3 = e−µ1/3ωT (2.21)

where ω = e2πi/3 is the principle third root of unity. If µ ∈ R+i it follows that λ1 =

exp
(−|µ|1/3eiπ/6T

)
and since cos(π/6) > 0 we have |λ1| → 0 as R+i 3 µ → ∞.

Similarly, λ2 = exp
(−|µ|1/3e5π/6T

)
and λ3 = exp

(|µ|1/3i
)

so that |λ2| → ∞ as R+i 3
µ → ∞ and |λ3| = 1. Thus, for µ ∈ R+i large, we have that µ is an eigenvalue of

multiplicity one. Similarly, we can show |λ1| → ∞, |λ3| → 0 as R+i 3 µ → −∞
and |λ2| = 1 for µ ∈ R−i, |µ| À 1. Therefore, it follows that µ ∈ spec(∂xL[u]) with

multiplicity one for µ ∈ Ri, |µ| À 1.

The final claim follows from a similar asymptotic calculation together with an an-

alyticity argument. As noted above, for µ real the eigenvalues of the monodromy

are either all real or one real and one complex conjugate pair. It follows that if

µ ∈ spec(∂xL[u]) ∩ R, then 1 or −1 must be an eigenvalue of the monodromy. Indeed,

it is clear that if µ ∈ spec(∂xL[u]) is real and M(µ) has all real eigenvalues, then either

1 or −1 must be an eigenvalue of M(µ). If, for such µ, M(µ) has a complex conjugate

pair of eigenvalues, it must be that 1 is an eigenvalue of M(µ) since det(M(µ)) = 1.

Thus if a point on the real axis is in the spectrum then either D(µ, 1) or D(µ,−1) must

vanish. Since the functions D(µ,±1) are entire functions, it follows that are either

identically zero or the zero set has no finite accumulation points. However, the large

µ asymptotics for µ ∈ R implies that neither of the functions D(µ,±1) can identically
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vanish, and hence their zero sets must be discrete. Furthermore, the large µ asymp-

totics implies that for sufficiently large µ along the real axis µ /∈ spec (∂xL[u]), so the

spectrum is confined to a compact subset of the real line. Since we have already argued

the sets {µ ∈ C : D(µ,±1) = 0} have no finite accumulation points, it follows that there

are only a finite number of real eigenvalues.

Remark 2. Note that, in the calculation of Hǎrǎguş and Kapitula [35] the real eigen-

values play a slightly different role than other eigenvalues off of the imaginary axis.

The fact that there are only a finite number of these indicates that there are only a

finite number of values of the Floquet parameter for which there are real eigenvalues:

κr(γ) = 0 for all but a finite number of values of the Floquet parameter γ in their

notation.

2.5 The Orientation Index: Finite-Wavelength Instabilities

We now move on to study the structure of spec(∂xL[u]) ∩ R more carefully. We will

suppose throughout this section that µ ∈ R. Clearly, the condition D(µ, 1) = 0 is

sufficient to guarantee µ ∈ spec(∂xL[u]). In particular, such roots correspond to the

periodic eigenvalues of the operator ∂xL[u]. Since D(µ, 1) = a(µ)−a(−µ) by Proposition

1, it is clear that D(0, 1) = 0 and hence µ = 0 is a T -periodic eigenvalue of ∂xL[u]. The

question is whether D(µ, 1) has any other real roots. If it does, then the underlying

periodic solution u(x; a,E, c) is spectrally unstable due to the presence of a real non-

zero element of spec(∂xL[u]). In order to detect this periodic instability, we calculate

the orientation index

sign (D(∞, 1))
∂m

∂µm
D(µ, 1)

∣∣
µ=0

in terms of the function a(µ) = tr(M(µ)), where m is the first positive integer such

that the mth derivative of D(·, 1) at µ = 0 is non-zero. Note that it is clear that the

negativity of this index implies the set {µ ∈ R∗ : D(µ, 1) = 0} is non-empty. Indeed,

negativity would imply the sign of D(µ, 1) for small positive µ is opposite that of the

sign of D(µ, 1) for large positive µ. Since D(µ, 1) is continuous on R, our claim follows.
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As we will see in the next section, Lemma 1 implies that Dµ(0, 1) = 0. Since

Dµµ(0, 1) clearly vanishes, we see that m ≥ 3. Moreover, in the next section we will use

the integrable structure of the traveling wave ODE (2.5) in order to calculate this index

in terms of the conserved quantities of the traveling wave. However, we merely mention

these results now as to not distract from the modulational instability analysis of the

next section. In order to calculate the above orientation index, we start by determining

the asymptotic behavior of D(µ, 1) as µ →∞.

Lemma 3. The function D( · , 1) : R → R is an odd function which satisfies the

asymptotic relation

lim
R3µ→±∞

D(µ, 1) = ∓∞.

Proof. Clearly, D( · , 1) is an odd function of its argument, and hence it is sufficient to

consider the limit as µ → ∞. To begin, define a new variable ρ = µ1/3T . Then from

the asymptotic relations (2.21) we have

a(ρ) = e−ρ + e−(−1+
√

3i)ρ/2 + e−(−1−√3i)ρ/2

ã(ρ) = eρ + e−(1+
√

3i)ρ/2 + e−(1−√3i)ρ/2

where ã(ρ) is the trace when you take µ → −µ. It follows that D(µ, 1) = a(ρ) − ã(ρ)

behaves like −eρ for large positive ρ, i.e. µ À 0. This completes the proof.

From these results, we have the following theorem relating the sign of tr(Mµµµ(0))

to the stability of the underlying periodic wave.

Theorem 6. If a′′′(0) = tr(Mµµµ(0)) > 0, then the number of roots of D(µ, 1) (i.e.

the number of periodic eigenvalues) on the positive real axis is odd. In particular

spec(∂xL[u]) ∩ R∗ 6= ∅ and the eigenvalue problem (2.16) is spectrally unstable.

Proof. We show in lemma 2 that D(0, 1) = Dµ(0, 1) = Dµµ(0, 1) = 0 and Dµµµ(0, 1) =

2a′′′(0). Thus, if a′′′(0) > 0, then D(µ; 1) is positive for small positive values of µ.

Since D(µ, 1) is negative for sufficiently large µ we know that D(±µ∗, 0) = 0 for some

µ∗ ∈ R \ {0}, which completes the proof. In the next section we establish the following
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formula for Dµµµ(0, 1), the first non-vanishing derivative:

Dµµµ(0, 1) = −3

∣∣∣∣∣∣∣∣∣∣

Ta Ma Pa

TE ME PE

Tc Mc Pc

∣∣∣∣∣∣∣∣∣∣

= 6

∣∣∣∣∣∣∣∣∣∣

Kaa KaE Kac

KaE KEE KcE

Kac KcE Kcc

∣∣∣∣∣∣∣∣∣∣

=
3
E

∣∣∣∣∣∣∣∣∣∣

Ma Pa Ha

ME PE HE

Mc Pc Hc

∣∣∣∣∣∣∣∣∣∣

,

where again K is the classical action of the traveling wave ODE. Hence this “orientation

index” can be expressed in terms of the Jacobian of the map between the constants of

integration of the traveling wave ordinary differential equation (a,E; c) and the con-

served quantities M, P, and H of the gKdV, assuming E 6= 0. This orientation index

is analogous to the quantity which is calculated in the stability theory of the solitary

waves, and we will see this connection explicitly in later sections.

Recall from our remarks in the previous section that the number of negative eigen-

values of L[u] on L2
per(R) bounds above the number of periodic eigenvalues of ∂xL[u]

with positive real part. Since L[u] has precisely one negative eigenvalue if TE ≥ 0 (see

Lemma 10), and since the set spec(∂xL[u]) is symmetric about the real and imaginary

axis, it follows that all unstable periodic eigenvalues of the linearized operator must be

real. Thus, the set {µ ∈ R∗ : D(µ, 1) = 0} is empty if a′′′(0) < 0, and contains pre-

cisely one element if a′′′(0) > 0. Indeed, since D(µ, 1) is continuous on R, the condition

a′′′(0) < 0 implies the cardinality of non-zero real roots is even, and hence must in fact

be zero. This immediately yields the following corollary to Theorem 6.

Corollary 2. If (a0, E0, c0) ∈ Ω, then the corresponding periodic traveling wave solution

of (2.1) is exponentially unstable to periodic perturbations if a′′′(0) > 0, and is spectrally

stable to such perturbations if a′′′(0) < 0.

It is important to notice the instability detected by Theorem 6 is an instability with

respect to finite (bounded) wavelength perturbations. In the next section we will derive

a modulational stability index which detects instability with respect to arbitrarily long

wavelength perturbations. See the comments at the end of the section 2.6.2. Notice the

solitary wave solutions go unstable in the manner detected by Theorem 6, through the
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creation of an eigenvalue on the real axis. In general the periodic waves seem to first

go unstable through the creation of a band of spectrum which does not intersect the

real axis, and later there is a secondary bifurcation resulting in a real eigenvalue. This

phenomenon appears to have first been observed by Kapitula and Hǎrǎguş. While we

don’t have a general proof of this we do show that, in the case of power law nonlinearity,

there is a real periodic eigenvalue as well as a band of unstable spectrum connected to

the origin. It is also worth noting that the analogous calculation for D(µ,−1) shows that

the number of anti-periodic eigenvalues is always even. While this is not particularly

useful in our analysis, it does eliminate some possible modes of instability.

2.6 Local Analysis of the Periodic Evans Function

In this section, we turn our attention to studying the asymptotic behavior of D(µ, eiκ)

as µ → 0. We begin by proving that D(0, eiκ) has a zero of multiplicity three at κ = 0 by

directly computing the Jordan normal form of the matrix M(0). In particular, we will

see that λ = 1 is an eigenvalue of M(0) of algebraic multiplicity three and geometric

multiplicity (generically) two. This calculation gives us a starting point for our analysis

of the spectrum of ∂xL[u] in a neighborhood of the origin.

Using perturbation theory appropriate to a Jordan block, as well as the Hamilto-

nian symmetry inherent in (2.16), we prove the three roots of D(µ, eiκ) bifurcate from

µ = 0 analytically in κ in a neighborhood of κ = 0, and derive a necessary and suffi-

cient condition for modulational instability of the underlying periodic wave u(x; a,E, c),

(a,E, c) ∈ Ω, in terms of the constants of motion of (2.1) restricted to the manifold

of periodic traveling wave solutions with (a, E, c) ∈ Ω. Note that this conclusion is

somewhat unexpected: normally the eigenvalues of a non-trivial Jordan block do not

bifurcate analytically but instead admit a Puiseux series in fractional powers. However

because of the symmetries of the problem the admissible perturbations are severely

restricted, resulting in a non-generic bifurcation.
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2.6.1 Calculation of the Period Map at the Origin

The first major calculation we present is an explicit calculation of the monodromy

matrix at the origin in terms of the derivatives of the underlying periodic solution u

with respect to the parameters (a,E, c). We do this by first computing a matrix valued

solution to the ordinary differential equation satisfying the wrong initial condition:

U(0, 0) is non-singular but not the identity. One can then multiply on the right by

U−1(0, 0) to find the monodromy matrix. We find that (as expected) the monodromy

operator M(µ) has a non-trivial Jordan form when µ = 0. Our goal is then to utilize

perturbation theory of Jordan blocks to calculate the normal form of the characteristic

polynomial in a neighborhood of µ = 0, λ = 1, where λ is the eigenvalue parameter of

the monodromy operator. We find that, due to the symmetry inherent in Lemma 1, the

Jordan blocks bifurcate in a very non-generic way.

To begin we write the above third order eigenvalue problem as a first order system

as in (2.17). Recall that det(M(µ)) = 1 for all µ ∈ C since tr(H(x; µ)) = 0 for

all (x, µ) ∈ R × C. In order to calculate a matrix solution Φ(x;µ), we must first

find three linearly independent solutions of the corresponding first order system. In

general, this is a daunting task, but since the above system with µ = 0 arises as the

Frechet derivative (linearization) of an integrable ordinary differential equation this can

be done by considering infinitesimal variations of the four-parameters defining the family

of periodic traveling wave solutions of (2.1), and thus generating the tangent space. As

noted earlier the solutions u(x−x0; a,E, c) constitute a 4-dimensional solution manifold

of (2.1) parameterized by x0, a, E, c. Heuristically then, the tangent space is spanned

by the generators ∂
∂x , ∂

∂a , and ∂
∂E . The action of the generator ∂

∂c is somewhat different

and is connected with the generalized null-space: this is because of its dynamical nature

within the family of periodic traveling wave solutions. Although this is trivially verified,

as in the proof of the following proposition, we outline here a proof based more on the

dynamics of the linearized equation.

Recall that u = u( · ; a0, E0, c0) is a member of a four parameter family of periodic

traveling waves. Differentiating the representation of this family with respect to the
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wave speed and evaluating at the identity (c=0) yields

∂

∂c
u(x + ct + ξ; a0, E0, c0 + c)|c=0 = tux(x + ξ; a0, E0, c0) + uc(x + ξ; a0, E0, c0). (2.22)

It now follows from the dynamical version of the spectral problem ∂xL[u]v = µv, i.e.

∂xL[u]v = −vt,

that ∂xL[u]uc = −ux. Indeed, notice that if ∂xL[u]ψ1 = ux, then if we let v(x, t) =

a0(t)ux + a1(t)ψ1(t), for some coefficient functions a0 and a1 and require that v solves

∂xL[u]v = −vt, we see that the coefficient functions satisfy the first order system




a0

a1




t

=




0 −1

0 0







a0

a1


 .

It follows that a1 is a constant and v = a1 (ux − tψ1). Comparing this with (2.22) it

follows that ∂xL[u]uc = −ux as claimed. This action will become important in the next

section as it will allow us to explicitly compute the O(|µ|) variation of the eigenfunction

bifurcating from the ux state in terms of uc, and hence the calculation of the O(|µ|2)
variation reduces to a first order calculation. We summarize these observations within

the following proposition. Again, the above claim can be proved trivially from the

structure of the traveling wave ODE, as in the following Proposition, however we find

the above proof to be useful in understanding why the generator ∂
∂c acts differently

from the others: any time an equation has a symmetry which is dynamical in nature

(like scaling in the wave-speed or Galilean invariance, for example) the resulting action

yields an element of the generalized null space of the linearized operator at the origin.

Proposition 2. A basis of solutions to the third order system

Yx = H(x; 0)Y

54



is given by

Y t
1 = (ux, uxx, uxxx)

Y t
2 = (ua, uax, uaxx)

Y t
3 = (uE , uEx, uExx).

A particular solution to the inhomogeneous problem

Yx = H(x; 0)Y + W

where W t = (0, 0, ux) is given by

Y t
3 = (uc, ucx, ucxx).

Proof. A straightforward calculation: simply differentiate (2.6) to see that L[u]ux = 0,

L[u]ua = −1, L[u]uE = 0, and L[u]uc = −u. Notice that it follows that ∂xL[u] (−uc) =

ux.

The fact that ua, uE are not periodic - they exhibit secular growth due to the

variation of the period with respect to the parameters - gives an indication that the

eigenspaces of the monodromy at µ = 0 are not semi-simple, and hence we expect the

existence of a non-trivial Jordan block of the monodromy map M(0). This is the main

result of this section whose proof we now present.

By Proposition 2, three linearly independent solutions of (2.17) corresponding to

µ = 0 are given by

Y1(x) =




u′

u′′

u′′′




, Y2(x) =




ua

u′a

u′′a




, and Y3(x) =




uE

u′E

u′′E




, (2.23)

where we have suppressed the dependence on the variables x, a, E, and c. By hypoth-
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esis, for any (a,E, c) ∈ Ω the solution u satisfies

u(0; a,E, c) = u− = u(T ; a,E, c) (2.24)

∂xu(0; a,E, c) = 0 = ∂xu(T ; a,E, c) (2.25)

∂xxu(0; a,E, c) = −V ′(u−; a, c) = ∂xxu(T ; a,E, c). (2.26)

Moreover, from equation (2.1) it follows that

uxxx(0; a,E, c) = cux(0; a,E, c)− d

dx
(f(u(x; a, E, c)))

∣∣
x=0

= 0.

Defining U(x, 0) = [Y1(x), Y2(x), Y3(x)] to be the corresponding solution matrix in this

basis, a direct calculation yields

U(0, 0) =




0 ∂au− ∂Eu−

−V ′(u−) 0 0

0 1− V ′′(u−)∂au− −V ′′(u−)∂Eu−




. (2.27)

Note that differentiating the relation E−V (u−) = 0 gives the relation −V ′(u−)∂Eu− =

−1, and hence det(U(0, 0)) = −1. Thus, these solutions are linearly independent at

x = 0, and hence for all x. By using similar methods then, we can compute U(T, 0)

and right-multiply by U−1(0, 0) to determine the monodromy M(0).

The matrix U(T, 0) can be calculated by differentiating (2.24)-(2.26) with respect

to the parameters a and E by use of the chain rule. Notice this time the dependence

of the period on a and E enters in an important way. For example, differentiating the

relation (2.24) with respect to the parameter E gives

∂Eu(T ; a,E, c) = uE(T ; a,E, c) +
∂u

∂x
(T ; a,E, c) TE(a, c, E) = ∂Eu−.

Since the derivative vanishes at the period points this implies ∂Eu(T ) = ∂Eu−. However,
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differentiating (2.25) with respect to E gives

∂Eux(T ; a, E, c) = uxx(T ; a,E, c)TE + uEx(T ; a,E, c) = 0

which implies uEx(T ; a,E, c) = V ′(u−)TE . Continuing in this manner gives the follow-

ing expression for the change in this matrix solution across the period:

U(T, 0) = U(0, 0) +




0 0 0

0 V ′(u−; a, c)Ta V ′(u−; a, c)TE

0 0 0




. (2.28)

In particular, we find that U(T, 0)− U(0, 0) is a rank one matrix, which naturally leads

to the following proposition.

Proposition 3. There exists a basis in R3 such that the monodromy matrix M(µ)

evaluated at µ = 0 takes the following Jordan normal form:

M(0) ∼




1 0 0

0 1 σ

0 0 1




(2.29)

where σ 6= 0 as long as Ta and TE do not simultaneously vanish. In particular, the

monodromy operator at µ = 0 has a single eigenvalue of λ = 1 with algebraic multiplicity

three and geometric multiplicity two as long as the period is not at a critical point with

respect to the parameters a and E for fixed waves speed c.

Proof. Recall det(U(0, 0)) = −V ′(u−)∂Eu− = −1, so U(0, 0) is invertible. Multiplying

the above expression for U(T, 0) on the right by the matrix U−1(0, 0) yields

M(µ = 0) = I + ~w ⊗ ~v U−1(0)
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where ~w = (0, 1, 0)T and ~v = (0, V ′(u−)Ta, V
′(u−)TE)T . Next, notice that

U(0, 0)




0 −Ta −TE

0 0 0

0 0 0




= ~w ⊗ ~v

and hence defining N := U−1(0)M(0)U(0) gives the equation

N =




1 −Ta −TE

0 1 0

0 0 1




.

It follows that

Ker(N− I) = span
{
(1, 0, 0)T , (0, TE ,−Ta)T

}

Now, take ~v3 := (0,−Ta,−TE) and notice that ~v3 /∈ Ker(N− I). The Jordan structure

then follows by noticing then that (N− I)~v3 = (T 2
a + T 2

E)(1, 0, 0)T ∈ ker(N− I).

Finally, recall that if u and f(u) are co-periodic, we have already stated that TE > 0.

In other situations we will assume that this condition is met unless otherwise stated.

Knowing an orthogonally invariant structure for M(0) gives us a base point to

begin our perturbation calculation. In particular, notice that since M(0) has 1 as an

eigenvalue with geometric multiplicity two, it follows that D(0, 1) = Dµ(0, 1) = 0, and

hence the linearized operator ∂xL[u] has a periodic eigenvalue of multiplicity at least

three at the origin: recall that D(·, 1) is an odd function. This will be established

rigorously in the next section as a result of Lemma 1. The important point is that

the implicit function theorem fails for the equation D(µ, eiκ) = 0 in a neighborhood of

(µ, κ) = (0, 0). However, we are able to correct this by finding the dominant balance

of the equation D(µ, eiκ) = 0 in a neighborhood of (µ, κ) = (0, 0) and using a suitable

change of coordinates. This is one of our main results in the next section.
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2.6.2 Asymptotic Analysis of D(µ, κ) near (µ, κ) = (0, 0)

We now analyze the characteristic polynomial of M(µ) in a neighborhood of µ = 0 by

considering M(µ) as a small perturbation of the matrix M(0) constructed above. It is

well understood how the eigenvalues of a Jordan block bifurcate under perturbation: see

Kato[41] or Moro, Burke and Overton[51]. It is worth noting, however, that in this case

the bifurcation is highly non-generic due to the constraints imposed by the symmetry

of the problem.

Recall from Proposition 1 that the spectrum near µ = 0 is continuous. By the

analyticity of M(µ) in a neighborhood of µ = 0, we can expand M(µ) for small µ as

M(µ) = M(0) + µMµ(0) +
µ2

2
Mµµ(0) +O (|µ|3)

where Mµ(0) = [M (1)
i,j ] and Mµµ(0) = [M (2)

i,j ]. If one makes a similarity transform

M̃(µ) = V−1 M(µ)V so that M̃(0) is in the Jordan normal form (2.29) then a direct

calculation using the above second order expansion of M̃(µ) implies that in a neigh-

borhood of µ = 0, the Evans function can be expressed as

D(µ, eiκ) = det
(
( M̃(µ)− I)− (eiκ − 1)I

)

= −η3 + η2

(
µ tr

(
M̃µ(0)

)
+

µ2

2
tr( M̃µµ(0))

)

− η

(
µM̃

(1)
3,2 σ + µ2

(
1
2

(
tr( M̃µ)

)2
− 1

2
tr( M̃

2

µ)− σ

2
M̃

(2)
3,2

))

− σ(M̃ (1)
1,1 M̃

(1)
3,2 − M̃

(1)
3,1 M̃

(1)
1,2 )µ2

+ µ3
(
det

(
M̃µ(0)

)
+ σS

)
+O (4) , (2.30)

where η = eiκ − 1, S represents mixed terms from M̃µ(0) and M̃µµ(0), σ is as in

Proposition 3, and the notation O (4) represents terms whose degree is four or higher.

Notice there are no other µ3 terms since M(0) − I has rank one. Notice that from

the previous subsection, we know the equation ∂xL[u]v = 0 has at least two T -periodic

solutions. Thus, it must be that D(µ, 1) = O(|µ|3). However, we need more detailed

analysis to understand the way in which these three periodic-eigenvalue bifurcate from
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the µ = 0 state. To this end, we use the symmetry from Lemma 1 in order to determine

the dominant balance of the equation D(µ, eiκ) = 0 in a neighborhood of (µ, κ) = (0, 0).

A useful construction for implicit function calculations of this type is that of the

Newton diagram, which is a subset of the non-negative integer lattice Z+×Z+: see the

appendix for more details. A vertex (i, j) is included if the coefficient of η3−iµj in (2.30)

is non-zero, otherwise the vertex is not included. The lower convex hull of the Newton

diagram is made up of a collection of line segments. For each line segment of the lower

convex hull the implicitly defined function has j distinct solution branches, where j is

the horizontal length of the segment, of the form

ηk =
∑

i

α
(k)
i µsi,

where α
(k)
1 6= 0, s is the slope of the line segment, and k ranges from 1 to j. This is

equivalent to the method of “dominant balance” presented in textbooks on asymptotic

methods but is somewhat more systematic. For more information, see the appendix.

As an application to our problem, notice that the Newton diagram corresponding

to the perturbed matrix M̃(0) + µ M̃µ(0) +O(|µ|2) implies that, generically, the three

eigenvalues bifurcating from the µ = 0 state are determined by the number σM̃
(1)
3,2 ,

where σ is defined as in Proposition 3. If this number is non-zero, the Newton diagram

implies one eigenvalue bifurcates as µ = µ1κ
2 +O(κ4) and two bifurcate as ±µ2,3

√
κ +

O(κ), where the µi are non-zero. In particular, the pair of eigenvalues bifurcating

non-analytically from the µ = 0 state are given by

µ0 = − 1

σM̃
(1)
3,2

κ +O(κ2), µ± =

√√√√ 6iσM̃
(1)
3,2

Dµµµ(0, 1)
κ1/2 +O(κ),

where we take the standard square root branch. This immediately implies modulational

instability of the underlying periodic wave u(x; a,E, c) for any non-linearity f , which is a

highly unusual assertion. Thankfully, the symmetry inherent in the linearized operator,

namely that M(µ) ∼ M(−µ)−1, forces the quantity σM̃
(1)
3,2 to vanish, which results in
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0
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3

Figure 2.2: The Newton diagram corresponding to the asymptotic expansion of
D(µ, κ) = 0 in a neighborhood of (µ, κ) = (0, 0) is shown to O(|µ|3). Terms associ-
ated to open circles are shown to vanish due to the natural symmetries inherent in
(2.1). The grey circles are non-vanishing terms which are a part of the lower convex
hull. The black circles lie above the lower convex hull and thus do not contribute to the
leading order asymptotics.

a non-generic bifurcation from the µ = 0 state. Moreover, the vanishing of this product

forces the use of a second order expansion of M(µ) near µ = 0 since the first order

information has been shown to be insufficient. These results are proved in the following

lemma.

Lemma 4. The equation D(µ, eiκ) = 0 has the following normal form in a neighborhood

of (µ, κ) = (0, 0):

−(iκ)3 +
iκµ2

2
tr (Mµµ(0)) +

µ3

3
tr (Mµµµ(0)) +O(4) = 0,

whose Newton diagram is depicted in Figure 2.1, where O(4) represents terms of order

four or higher in the variables κ and µ. Notice that if tr (Mµµµ(0)) = 0, this only

applies to two of the three branches bifurcating from the µ = 0 state.

Proof. Let a(µ) = tr(M(µ))) as before and define the function b in a neighborhood of
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µ = 0 by

det[(M(µ)− I)− (eiκ − 1)I] = −η3 + (a(µ)− 3)η2 + b(µ)η + D(µ, 1), (2.31)

where η = eiκ−1. Notice in particular that η = iκ+O (
κ2

)
in a neighborhood of κ = 0.

By (2.30), we have the expressions

a(µ) = tr(M(µ)) = 3 + µ tr(Mµ(0)) +
µ2

2
tr(Mµµ(0)) +

µ3

6
tr(Mµµµ(0)) +O(|µ|4)

b(µ) =
1
2

(
tr((M(µ)− I)2)− tr(M(µ)− I)2

)

= −µM
(1)
3,2 σ − µ2

(
1
2

tr(Mµ)2 − 1
2

tr(M2
µ)− σ

2
M̃3,2

)
+O(|µ|3)

D(µ, 1) = −σ(M̃ (1)
1,1 M̃

(1)
3,2 − M̃

(1)
3,1 M̃

(1)
1,2 )µ2 + (det(Mµ(0)) + σS) µ3 +O(|µ|4)

Recall from Proposition 1 that D(µ, 1) is an odd function of µ, and hence D(µ, 1) =

O(|µ|3), i.e. Dµµ(0, 1) = −2σ(M̃ (1)
1,1 M̃

(1)
3,2 − M̃

(1)
3,1 M̃

(1)
1,2 ) = 0.

Similarly, using (2.31) along with Lemma 1 we have

det[M(µ)− λI] = −λ3 det
[
M(−µ)− 1

λ

]

= −(λ− 1)3 − a(−µ)λ(λ− 1)2 + b(−µ)λ2(λ− 1)−D(−µ, 1)λ3.

Comparing the λ2 and λ3 terms above with those in (2.31) we get the relations





b(µ) = 2a(µ)− a(−µ)− 3, and

a(µ)− b(µ) + D(µ, 1) = 3.

Since D(µ, 1) = O(|µ|3), these relations imply b′(0) = 3a′(0) = a′(0). Hence, tr (Mµ(0)) =

a′(0) = 0 and −σM̃
(1)
3,2 = b′(0) = 0. By recalling σ 6= 0 from 3, this implies M̃

(1)
3,2 = 0.

Similarly, we have a′′(0) = b′′(0) and hence b′′(0) = tr(Mµµ(0)). Also, we have

b′′′(0) = 3a′′′(0) and Dµµµ(0, 1) = b′′′(0) − a′′′(0) = 2a′′′(0), and hence Dµµµ(0, 1) =

2 tr(Mµµµ(0)). The corollary follows by analyzing equation (2.30) as well as the corre-

sponding Newton diagram (see Figure 2.2).
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From this it follows that, in the neighborhood of the origin, the leading order piece

of the periodic Evans function is a homogeneous cubic polynomial in the variables κ, µ.

Thus, to leading order, the spectrum in a neighborhood of the origin consists of three

straight lines, one of which is guaranteed to lie along the imaginary axis by Proposition

1. Although the implicit function theorem still fails for the dominant balance obtained

in Lemma 4, it is easily corrected by considering projective coordinates (as suggested

by the homogeneity of the dominant balance), which leads to the following theorem.

Theorem 7. With the above notation, define

∆(f ; u) =
1
2

( tr(Mµµ(0)))3 − 3 ( tr(Mµµµ(0)))2 , (2.32)

where f denotes the dependence on the non-linearity used in (2.1), and suppose that

tr(Mµµµ(0)) is non-zero. If ∆ > 0, then the imaginary axis in the neighborhood in

the origin is in the spectrum with multiplicity three. If ∆ < 0 then the imaginary axis

in a neighborhood of the origin is in the spectrum with multiplicity one, together with

two curves which leave the origin along lines in the complex plane: see Figure 2.3. In

particular, in the latter case the periodic wave is modulationally unstable.

Proof. Since the leading order piece of the Evans function is homogeneous it suggests

working with a projective coordinate y = iµ
κ . Making such a change of variables leads

to the equation

1− y2

2
tr (Mµµ(0)) +

y3

3
tr (Mµµµ(0)) + κE(κ, y) = 0,

where E(κ, y) is continuous in a neighborhood of the origin. The implicit function

theorem applies in a neighborhood of the points (y = y1,2,3, κ = 0) as long as the roots

y1,2,3 of the above cubic in y are distinct, which is true as long as the discriminant ∆ is

not zero. In terms of the original variable µ we have the three spectral branches

µ1,2,3 = iy1,2,3κ + O(κ2)

63



Figure 2.3: When ∆(f ; u) < 0, the local normal form of spec(∂xL[u]) consists of a
segment of the imaginary axis union with two straight lines making equal angles with
the imaginary axis. The non-horizontal dashed lines represent the actual spectrum,
while the dark lines represent our approximation obtained through Lemma 4. Notice
that these lines intersect at the origin, corresponding to the fact that 1 is an eigenvalue
of M(0) with algebraic multiplicity three.

This cubic has three real roots when ∆ > 0, giving three branches of spectrum emerging

from the origin tangent to the imaginary axis. It is clear from symmetry that these

must in fact lie on the imaginary axis, giving a interval of spectrum of multiplicity

three along the imaginary axis. In the case that the discriminant is negative there is

one real root and two complex conjugate roots, giving one branch of spectrum along

the imaginary axis and two branches emerging from the origin along (to leading order)

straight lines.

Remark 3. First we note that tr(Mµµ(0)) < 0 is a sufficient condition for modula-

tional instability of the periodic wave.

Secondly, notice that the analyticity of the spectrum is only dependent on the non-

vanishing of tr(Mµµµ(0)), and is independent on whether tr(Mµµ(0)) vanishes or not.

In particular, this analyticity is broken if tr(Mµµµ(0)) = 0 since then there is a slope

in the Newton diagram greater than one, corresponding to at least one of the branches

of spectrum bifurcating from the µ = 0 state to admit a series in fractional powers of κ.
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Later we will give a formula for tr(Mµµµ(0)) in terms of the Jacobian of a map, and

we will see that vanishing of this quantity signals a change in the Jordan structure of

the underlying linearized operator.

Finally we note that this agrees with the result of Bottman and Deconinck[12], in

which they considered cnoidal wave solutions to the KdV. Using the algebro-geometric

techniques of Belokolos, Bobenko, Enol’skii, Its and Matveev[9] they explicitly computed

the spectrum of the linearized operator and found that such solutions are always spectrally

stable. Their results prove that an interval of the imaginary axis containing the origin

is in the spectrum of the linearized operator with multiplicity three. Our results imply

this is a generic phenomenon: either one has an interval of spectrum of multiplicity

three about the origin, or one has three curves intersecting at the origin. For cnoidal

solutions of the KdV, the discriminant ∆ is expressible in terms of elliptic functions

in this case and must be positive (by the results in [12]), although we have not tried to

show this explicitly.

It is instructive to compare this theorem with that of Theorem 6. By Theorem 7,

the sign of tr(Mµµµ(0)) has no effect on the spectral stability of the underlying periodic

wave in a sufficiently small neighborhood of the origin. However, Theorem 6 guarantees

the existence of unstable real spectrum if tr(Mµµµ(0)) > 0. To reconcile these results,

notice Proposition 1 implies there is no unstable real spectrum sufficiently close to the

origin. Thus, the instability brought on by tr(Mµµµ(0)) > 0 is not local to µ = 0, and

hence should not be detected by the quantity ∆(f ;u).

Our next goal is to try to evaluate the “modulational stability index” ∆(f ; u) as

well as the finite wavelength orientation index tr(Mµµµ(0)) in terms of the conserved

quantities of (2.1). As we will see, this can be done very explicitly. Notice that while we

have chosen to express the coefficients as tr(Mµµ(0)) and tr(Mµµµ(0)), which suggests

that they arise at second order and third order in a perturbation calculation for small µ,

these quantities can be expressed in terms of quantities which arise at first and second

order in µ due to the action of the vector field d
dc . Furthermore, while all of the first

order terms contribute to these expressions, only a few terms which are second order
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actually contribute - these are the terms which are associated to the minors of the off-

diagonal piece of the unperturbed Jordan form. Again, due to the action of the vector

field d
dc , these second order terms are explicitly computable via a single quadrature.

Theorem 8. We have the following identities:

tr(Mµµ)|µ=0 = {T, P}E,c + 2{M, P}a,E (2.33)

tr(Mµµµ)|µ=0 = −3
2
{T, M,P}a,E,c (2.34)

where T, M, P are the period, mass, and momentum of the underlying periodic traveling

wave. Thus the modulational stability index has the following representation

∆ =
1
2

({T, P}E,c + 2{M,P}a,E)3 − 3
(

3
2
{T, M, P}a,E,c

)2

.

Proof. Let wi(x;µ), i = 1, 2, 3, be three linearly independent solutions of (2.1), and let

W(x, µ) be the solution matrix with columns wi. Expanding the above solutions in

powers of µ as

wi(x, µ) = w0
i (x) + µw1

i (x) + µ2w2
i (x) +O(|µ|3)

and substituting them into (2.16), the leading order equation becomes

d

dx
w0

i (x) = H(x; 0)w0
i (x).

Using Proposition 2, we choose wi(x) = Yi(x) where the vectors Yi(x) are defined in

equation (2.23). The higher order terms in the above expansion yield

d

dx
wj

i (x) = H(x; 0)wj
i (x) + V j−1

i (x), j ≥ 1,

where V j−1
i =

(
0, 0,−(wj−1

i )1
)t

and (v)1 denotes the first component of the vector v.

Notice that for each of the higher order terms j ≥ 1, we require wi
j(0) = 0 in order to

ensure that W(0, µ) = U(0, 0) in a neighborhood of µ = 0, where U(0, 0) is defined in

(2.27). In the case j = 1, the i = 1 equation is equivalent to the equation L0w
1
1 = ux.
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It follows again from Proposition 2 that we can choose

w1
1(x) =




−uc

−ucx

−ucxx




+ A




ua

u′a

u′′a




+ B




uE

u′E

u′′E




for some constants A and B. In order to compute A and B, we evaluate at x = 0 and

require the resulting expression vanish. This yields to the system of equations




−∂u−
∂c

∂u−
∂a

∂u−
∂E

−u− + V ′′(u−)∂u−
∂c 1− V ′′(u−)∂u−

∂a −V ′′(u−)∂u−
∂E







1

A

B




=




0

0

0




.

It follows that A = u− and B can be expressed as

B =
∂u−
∂c − u−

∂u−
∂a

∂u−
∂E

.

Differentiating the relation E − V (u−; a, c) = 0 implies 2V ′(u−; a, c)∂u−
∂c

= u2− and

V ′(u−; a, c)∂u−
∂a

= u−. Thus, 2B = −u2− and hence we can take

w1
1(x) =




−uc

−ucx

−ucxx




+ u−




ua

u′a

u′′a



− u2−

2




uE

u′E

u′′E




.

Therefore, the following asymptotic expression of the matrix δ W(µ) := W(T ;µ) −
W(0;µ) is valid in a neighborhood of µ = 0:




O(|µ|2) O(|µ|) O(|µ|)
µV ′(u−)P (u−) +O(|µ|2) V ′(u−)Ta +O(|µ|) V ′(u−)TE +O(|µ|)

O(|µ|2) O(|µ|) O(|µ|)




where P (x) = −Tc +xTa− x2

2 TE . In particular, notice that since M(µ) = δ W(µ)+I, it

follows directly from this expansion that D(µ, 1) = det(δ W(µ)) det(W(0))−1 = O(µ3).
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In order to compute the higher order terms in the above expression, we use variation

of parameters as well as the identities {ux, u}x,E = −1 and {u, ux}x,a = u to calculate

wj
i (x) = W(x, 0)

∫ x

0
W(z, 0)−1V j−1

i (z)dz (2.35)

=




ux

∫ x
0 (wj−1

i )1{u, ux}a,E dz − ua

∫ x
0 (wj−1

i )1dz + uE

∫ x
0 (wj−1

i )1u dz

uxx

∫ x
0 (wj−1

i )1{u, ux}a,E dz − uax

∫ x
0 (wj−1

i )1dz + uEx

∫ x
0 (wj−1

i )1u dz

uxxx

∫ x
0 (wj−1

i )1{u, ux}a,E dz − uaxx

∫ x
0 (wj−1

i )1dz + uExx

∫ x
0 (wj−1

i )1u dz




for w1
i , i = 2, 3, and wj

i for i > 1. Note that all of the O(µ, µ2) terms in the above

are necessary for the calculation, however we do not write them out explicitly. Noting

that our choice of basis implies det(W(0, µ)) = −V ′(u−)∂u−
∂E = −1, a tedious yet

straightforward calculation shows that

D(µ, 1) = −det (δ W(µ))

= −1
2
{T,M,P}a,E,c µ3 +O(|µ|4),

from which the expression for tr(Mµµµ(0)) follows by Theorem 6. Moreover, it fol-

lows from Lemma 4 and the fact M(µ) = δ W(µ)W(0, 0)−1 + I and a rather tedious

calculation that

tr(Mµµ(0)) = −2µ−2 tr(cof(M(µ)− I))
∣∣
µ=0

= {T, P}E,c + 2{M,P}a,E

as claimed.

Corollary 3. {T,M, P}a,E,c < 0 is a sufficient condition for the spectral instability

of a periodic traveling wave solution of (2.1). Moreover, if TE > 0 at (a0, E0, c0) ∈
Ω, the periodic wave traveling wave solution u( · ; a0, E0, c0) with (a0, E0, c0) ∈ Ω is

exponentially unstable to periodic perturbations if {T,M,P}a,E,c < 0 at (a0, E0, c0),

and is spectrally stable to such perturbations if {T,M, P}a,E,c > 0 at (a0, E0, c0).
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Proof. This is now clear from Theorems 6 and 8, and the fact that the number of

negative periodic eigenvalues of L[u] bound above the number of possible unstable

periodic eigenvalues of the linearized operator ∂xL[u] with positive real part.

At this point we can make a connection to the stability theory for the solitary

waves. A natural assertion is that the periodic traveling waves with (a,E, c) ∈ Ω

of sufficiently large period should have the same stability properties as the limiting

homoclinic (solitary) wave. This is in fact true for a large class of dispersive equations.

Indeed, the work of Gardner [30] shows that the linearized operator about such a periodic

wave has spectrum supported in the unstable half-space whenever the solitary wave has

an unstable eigenvalue. In particular, it is known that ∂xL[u] has spectrum supported

in the unstable half-space in the case of the gKdV with f(u) = up+1 if p > 4. We now

present a slight extension of this result in this special case of the gKdV with power-law

nonlinearity. We begin with the following technical lemma.

Lemma 5. If (a,E, 1) ∈ Ω, then Ma(a,E, 1) < 0 for a and E sufficiently small.

Proof. Notice that it is enough to show that Ma(a, 0, 1) < 0 for a sufficiently small.

This provides a great simplification since taking E = 0 implies V (0; a, 1) = 0, and so we

know one of the classical turning points of the Hamiltonian system (2.5) corresponding

to this solution. Now, after some rescaling M(a, 0, 1) can be expressed in the form

M∗(a, 0, 1) =
∫ r(a)

0

√
u√

a + u− up+1
du

where r(a) is the smallest positive root of a + u − up+1 = 0, and M∗(a, 0, 1) =

C∗M(a, 0, 1) for some C∗ > 0. Now, r is a smooth function for a sufficiently small

and satisfies

r(a) = 1 +
a

p + 1
+ O(a2).

The main idea is to now rescale the above integral to be over a fixed domain, and then

show the integrand is a decreasing function of a on this new domain.

69



Defining the new variable v = r(a)−1u gives

M∗(a, 0, 1) =
∫ 1

0

√
v√

a
r(a)3

+ v
r(a)2

− r(a)p−2vp+1
dv.

Now, using the above expansion for r(a) implies that

a

r(a)3
+

v

r(a)2
− r(a)p−2vp+1 = v − vp+2 + a

(
1− 2

p + 1
v − p− 2

p + 1
vp+1

)
+O(a2).

Since the O(a) term in this expression is positive on the open interval (0, 1), it follows

that the rescaled integrand is a decreasing function of a. Hence, Ma(a, 0, 1) < 0 for a

small enough.

The proof of our extension of Gardner’s result is now straightforward. This is the

content of the following corollary of Theorem 8 and Corollary 3.

Corollary 4. In the case of power-law nonlinearity and wavespeed c > 0, there are

always unstable periodic traveling waves in a neighborhood of the solitary wave (a =

E = 0) if p > 4. Moreover, such long wavelength periodic waves are modulationally

unstable if p > 4 and are modulationally stable if p < 4.

Proof. First, note that the scaling invariance in equation (2.4) implies the periodic

solution u(x; a,E, c) satisfies

u(x; a,E, c) = c1/pu

(
c1/2x;

a

c1+1/p
,

E

c1+2/p
, 1

)
.
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This allows us to compute the quantities Tc, Mc, Pc explicitly as follows:

Tc = − 1
2c

T − a(p + 1)
pc

Ta − E(p + 2)
pc

TE

Mc =
(

1
pc
− 1

2c

)
M +

(
Tc +

T

2c

)
u− − a(p + 1)

pc
(Ma − Tau−)

− E(2 + p)
pc

(ME − TEu−)

Pc =
(

2
pc
− 1

2c

)
P +

(
Tc +

T

2c

)
u2
− −

a(p + 1)
pc

(
Pa − Tau

2
−
)

− E(2 + p)
pc

(
PE − TEu2

−
)
,

where the equation for Tc follows from equation (2.8). Since we know that PE = 2Tc

and Pa = 2Mc, the above identities serve to express the last row and column of the

matrix 


Ta TE Tc

Ma ME Mc

Pa PE Pc




essentially in terms of the entries in the upper left 2× 2 block.

Now, when a and E are small there are two turning points r1, r2 in the neighborhood

of the origin and a third turning point r3 which is bounded away from the origin. In

the solitary wave limit a,E → 0 we have r1 − r2 = O(
√

a2 − 2E). From this, it follows

that the period satisfies the asymptotic relation

T (a,E, 1) = O (
ln(a2 − 2E)

)
. (2.36)

To see this, notice that if p is an odd integer there are three roots of the equation

E − V (u; a, 1)=0: two roots r1,2 are in a neighborhood of zero and the third root

r3 is positive and bounded away from zero. Thus, we can write E − V (u; a, 1) =

(r − r1)(r − r2)(r3 − r)Q(r) where Q(r) is positive on the set [r1, r3]. The period can
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then be expressed as

T (a,E, 1) =
√

2
∫ r3

r2

dr√
(r − r1)(r − r2)(r3 − r)Q(r)

=
√

2
∫ r2−r1+δ

r2−r1

dr√
r(r − (r2 − r1))(r3 − r1 − r)Q(r + r1)

+
√

2
∫ r3−r1

r2−r1+δ

dr√
r(r − (r2 − r1))(r3 − r1 − r)Q(r + r1)

The integral over the set (r2− r1 + δ, r3− r1) is clearly O(1) as (a,E) → (0, 0). For the

other integral, notice that

(r3 − r1 − r)Q(r + r1) > 0

on the set [r2 − r1, r2 − r1 + δ]. Thus, in the limit as (a,E) →∞ we have

T (a,E, 1) ∼
∫ r2−r1+δ

r2−r1

dr√
r(r − (r2 − r1))

= −4 ln(4(r2 − r1)) + 2 ln(2(
√

r2 − r1 + δ +
√

δ))

∼ − ln(r2 − r1)

from which (2.36) follows in the case when p is an odd integer: the case when p is not

odd is handled similarly.

By analogous calculations, we have the asymptotics

M(a,E, 1) = O(1)

P (a,E, 1) = O(1)

Ta(a,E, 1) = O
(

a

a2 − 2E

)
= ME(a, E, 1)

TE(a,E, 1) = O
(

1
a2 − 2E

)

Ma(a,E, 1) = O
(

a2

a2 − 2E

)
+O(ln(a2 − 2E))

for small (a,E). Thus the asymptotically largest minor of {T, M, P}a,E,c is −TEMaPc,
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and hence the above scaling gives the asymptotic relation

{T, M, P}a,E,c ∼ −TEMa

(
2
pc
− 1

2c

)
P

as a,E → 0. Now, it follows from Lemma 10 and Lemma 5 that TE(a,E, 1) > 0

and Ma(a,E, 1) < 0 for a and E sufficiently small such that (a, E, 1) ∈ Ω. Thus the

orientation index {T, M, P}a,E,c is negative for p > 4 and a,E sufficiently small (in other

words sufficiently close to the solitary wave) and positive for p < 4 and a,E sufficiently

small. This also follows, of course, from Gardner’s long-wavelength theory[30] but it

provides a good check for the present theory.

To prove the second claim, notice the above asymptotics implies

tr(Mµµ(0)) ∼ 1
2

TE

(
2
pc
− 1

2c

)
P

in the limit as a,E → 0. Hence, it follows that sign∆(a,E, c) = sign(4 − p) for a, E

sufficiently small such that (a, E, c) ∈ Ω. Thus, such periodic traveling waves of suffi-

ciently long period are also modulationally unstable for p > 4, and are modulationally

stable for p < 4.

It is worth noting that the instability mechanism detected by the discriminant ∆

is not present in the solitary wave case: in the solitary wave limit the bands of spec-

trum connected to the origin collapse to the origin. Moreover, this instability does not

appear to follow from Gardner’s calculation: Gardner shows that the point eigenvalue

of the solitary wave opens into a small loop of spectrum, predicting the real eigenvalue

detected by {T, M, P}a,E,c, but the modulational instability detected by ∆ is not de-

tected. This suggests the heuristic that periodic solutions should go unstable before

the solitary waves. The small amplitude stability calculation of Hǎrǎguş and Kapitula

for the generalized KdV equation amounts to a calculation of this discriminant in that

limiting case, and their proof that the small amplitude waves go unstable at p = 2 is

the first result we are aware of along these lines.

We believe that a small amplitude analysis of ∆(a,E, c) should be possible. It follows
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by a simple calculation that ∆ = 0 at the stationary solution: see the proof of Lemma

15 for the methods involved. By expanding near by solutions in terms of amplitude

instead of the energy E, we believe the first non-zero term of the discriminant should

be proportional to a polynomial which switches signs at p = 2, thus recovering the small

amplitude result of Hǎrǎguş and Kapitula [35]. We have not as yet carried out such an

analysis.

Using the identities between the gradients of the conserved quantities of (2.1) re-

stricted to the manifold of periodic traveling wave solutions, i.e. using (2.13), we now

have a sufficient criterion for the existence of a non-trivial intersection of spec(∂xL[u])

with the real axis in terms of the conserved quantities M , P and H of the gKdV flow

(assuming E 6= 0), as well as a necessary and sufficient condition for understanding the

normal form of the spectrum in a neighborhood of the origin. It is a rather striking fact

that both of these indices can be expressed entirely in terms of the conserved quantities

of the flow. The monodromy itself depends on the classical turning points u±(a,E, c) of

the traveling wave, as well as various functions and derivatives of this quantity, but the

indices themselves only depend on the gradients of the conserved quantities. This is,

of course, the Whitham philosophy, but the above analysis constitutes one of the only

cases we are aware of (other than the integrable calculations, which are very special)

which make this connection rigorous.

In the next section we outline the connections of this calculation to a calculation

based more directly on the linearized operator. While not strictly necessary, we believe

this calculation is useful since it clarifies the way in which various bifurcations can occur.

2.7 Local Analysis of spec(∂xL[u]) via the Floquet-Bloch
Decomposition

In this section we sketch an approach to the modulational instability problem working

directly with the linearized operator rather than with the Evans function. While these

two approaches are presumably equivalent the former seems less straightforward than

the latter. In particular it is not clear how one might derive the orientation index in this
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way, and the calculation of the modulational stability index gives a quantity which seems

much less transparent. Nevertheless we present an outline of this calculation (omitting

some details) since it does give some insight into the results of the previous section.

It should also be noted that, historically, this approach has favored such calculations.

Indeed, many of the small amplitude stability results for nonlinear PDE hinge on the

use of a Floquet-Bloch decomposition of the linearized operator, and then applying a

perturbation to study the stability of the solutions bifurcating from the constant state.

As mentioned several times before, one of the main difficulties in the spectral the-

ory of linear differential operators with periodic coefficients on L2 is the fact that the

spectrum is purely continuous, admitting no isolated eigenvalues of finite multiplicity.

Thus, many of the classical methods concerning spectral theory do not apply. How-

ever, difficulty can be circumvented by applying a Floquet-Bloch decomposition of the

spectral problem, i.e. by considering the operators

Jγ := e−iγx/T ∂xeiγx/T , Lγ [u] := e−iγx/TL[u]eiγx/T

on L2
per([0, T ]). By performing such a decomposition, the spectral problem ∂xL[u]v = µv

on L2(R) is replaced with a family of spectral problems for the operators {JγLγ [u]}γ∈[−π,π]

considered on the Hilbert space L2
per([0, T ];C) such that spec(∂xL[u]) is precisely the

union of the spectrum of the operators JγLγ [u] considered on L2
per([0, T ]): through a

slight abuse of notation, we denote this as spec(JγLγ [u])3. Moreover, each of the opera-

tors JγLγ [u] has a compact resolvent when acting on L2
per([0, T ]) and hence its spectrum

consists only of eigenvalues of finite-multiplicity. In this sense, such a decomposition

greatly simplifies the original spectral problem. However, one must now work with a

family of spectral problems, which carries its own hardships.

The outline for this section is as follows: first, we implement the Floquet-Bloch

decomposition to the linearized spectral problem corresponding to a periodic traveling

wave solution of the gKdV (2.1). We then prove from this operator view point that
3Recall that spec(A) has thus far denoted the L2(R) spectrum of an operator A. Throughout this

section, it will be obvious from context when we mean L2(R) spectrum of L2
per([0, T ]) spectrum.
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the spectrum bifurcates from the µ = 0 state analytically in the Floquet parameter

by using the Weierstrass perpetration theorem to narrow down the class of possible

bifurcations, and then appealing to the Fredholm alternative to deduce the desired

analyticity. Finally, we use the Fredholm alternative to develop a second modulational

instability index in terms of a solvability condition for an over-determined system of

equations. This index, while presumably equivalent to the one previously derived, seems

to have a much more complicated structure than that presented in Theorem 8. However,

this approach has the advantage of not explicitly utilizing the symmetry from Lemma

1 and hence may be applicable to more situations.

2.7.1 Floquet-Bloch Decomposition

We begin by detailing some of the basic properties of the Floquet-Bloch decomposition

applied to the spectral problem ∂xL[u]v = µv considered on L2(R).

From Floquet theory, we know any L∞ eigenfunction v(x) of the linearized operator

∂xL[u] must satisfy

v(x + T ) = eiγv(x)

for some γ ∈ [−π, π]. The quantity eiγ is known as the Floquet multiplier of the

eigenfunction v, while the number γ is the corresponding Floquet parameter. Notice

that the Floquet exponent is only defined up to an additive multiple of 2π, while the

Floquet multiplier is always unique. It follows any eigenfunction v(x) can be repre-

sented in the form v(x) = eiγx/T P (x) where P is a T -periodic function. The fact that

∂xL[u]v(x) = µv(x) for some µ ∈ C implies

eiγx/T JγLγ [u]P (x) = µeiγx/T P (x)

where Jγ =
(
∂x + i γ

T

)
and Lγ [u] = − (

∂x + i γ
T

)2 − f ′(u) + c. The operators JγLγ [u]

are known as the Bloch operator corresponding to the original spectral problem. This

suggests fixing a γ ∈ [−π, π] and considering the eigenvalue problem for the operator

JγLγ [u] on the Hilbert space H = L2
per([0, T ];C). This procedure is known as a Bloch,
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or Floquet-Bloch, decomposition of the eigenvalue problem (2.16) and we consider the

Bloch operators as acting on H. Notice for γ 6= 0 the operators JγLγ [u] acting on the

space H are closed with compactly embedded domain H3(R/TZ;C). It follows that the

Bloch operators have compact resolvent and hence their spectra consists of only point

spectra with finite algebraic multiplicities. Moreover, one has

spec(∂xL[u]) =
⋃

γ∈[−π,π]

spec (JγLγ [u]) .

Thus, this decomposition reduces the problem of locating the continuous spectrum

of the operator ∂xL[u] on L2 to the problem of determining the discrete spectrum

of a one parameter family of operators {JγLγ [u]}γ∈[−π,π] on H. Our first goal is to

understand the nature of the spectrum of the operator J0L0[u] at the origin. Notice in

particular that for γ1, γ2 ∈ [−π, π], Jγ1Lγ1 [u] is a compact perturbation of Jγ2Lγ2 [u],

and hence routine calculations prove the above parametrization of spec(JγLγ [u]) is in

fact continuous.

One of our fist goals is to prove that the operator J0L0[u] acting on the space H
has an eigenvalue at the origin of multiplicity three. As we are interested in the mod-

ulational instability of the underlying periodic traveling wave, we consider the family

of operators JγLγ [u] for |γ| ¿ 1, treating each one as a small perturbation of J0L0[u],

with our end goal being to study how the spectrum bifurcates from the γ = 0 state. We

begin with analyzing the generalized periodic null space of the operator ∂xL[u], denoted

Ng(∂xL[u]) =
⋃∞

n=1 N((∂xL[u])n).

Proposition 4. Suppose that the Jacobians {T,M}a,E and {T, P}a,E do not simulta-

neously vanish, and that {T,M, P}a,E,c 6= 0. Then zero is an eigenvalue of the operator

∂xL[u] = J0L0[u] considered on H of algebraic multiplicity three and geometric multi-
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plicity two. In the case {T, M}a,E 6= 0, define the functions

φ0 = {T, u}a,E , ψ0 = 1,

φ1 = {T, M}a,E ux, ψ1 =
∫ x

0
φ2(s)ds,

φ2 = {u, T, M}a,E,c ψ2 = {T, M}E,c + {T, M}a,Eu.

Then the set {φj}3
j=1 provides a basis for Ng(∂xL[u]) and, in particular, we have the

relations

∂xL[u]φ0 = 0 L[u]∂xψ0 = 0

∂xL[u]φ1 = 0 L[u]∂xψ1 = −ψ2

∂xL[u]φ2 = −φ1 L[u]∂xψ2 = 0.

Proof. The constants above are chosen for convenience, and the functions above are not

normalized. For instance, φ2 can be any multiple of ux and similarly ψ0 any constant.

Also, the ordering is chosen so that 〈φj , ψk〉 = 0 for i 6= k. Notice this proposition

does not follow directly from Proposition 2 since the functions ua, uE and uc are not in

general T-periodic, and thus do not belong to H.

First observe that (2.28) implies φ0 and φ1 are T -periodic and belong to N(JγLγ [u]).

Since Lemma 10 implies that TE > 0, it follows from Theorem 9 from Chapter 3 that µ =

0 is a simple eigenvalue of L0[u] acting on H. Since There is a linear combination of ua

and uE which is non-trivial and belongs to H, it follows that N(∂xL[u]) = span{φ0, φ1}.
Moreover, the fact that the monodromy at the origin is the identity plus a rank one

perturbation suggests that there is another non-trivial linear combination involving uc

which can be chosen to be periodic. Specifically we define

φ2 =

∣∣∣∣∣∣∣∣∣∣

ua Ta

∫ T
0 uadx

uE TE

∫ T
0 uEdx

uc Tc

∫ T
0 ucdx

∣∣∣∣∣∣∣∣∣∣

= {u, T, M}a,E,c
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and note it is clear from (2.28) that φ2 ∈ H and J0L0[u]φ2 = −φ1 as claimed. Thus, if

{T, M}a,E 6= 0, φ2 gives a function in N((J0L0[u])2)−N(J0L0[u]).

Similar arguments show that ψ0 and ψ2 are belong to N(L[u]∂x), and are linearly

independent provided that {T,M}a,E 6= 0. Moreover, a it is clear from construction that

ψ1 ∈ H and a straightforward computation shows that ψ1 belongs to N((L0[u]J0)2) −
N(L0[u]J0) as claimed.

In order to complete the proof, we must now show these three functions comprise

the entire generalized null space of J0L0[u] on H. To this end, we prove that neither

of the functions φ0, φ2 belong to the range of J0L0[u] by appealing to the Fredholm

alternative. Notice the equation J0L0[u]v = φ0 has a solution in H if and only if the

following solvability conditions are simultaneously satisfied:

〈1, φ0〉 = {T, M}a,E = 0, and

〈u, φ0〉 =
1
2
{T, P}a,E = 0.

Thus, if either {T, M}a,E or {T, P}a,E are non-zero, then N((J0L0[u])2)−N(J0L0[u]) =

span{φ2}. Similarly, N((J0L0[u])3) − N((J0L0[u])2) 6= ∅ if and only if the equation

L0v = φ2 has a solution in H, i.e. if and only if

〈u, φ2〉 =
1
2
{T, M, P}a,E,c = 0,

which completes the proof.

Notice that a similar construction in the case {T,M}a,E = 0 but {T, P}a,E 6= 0 the

basis

φ̃0 = {T, u}a,E , ψ̃0 = 1,

φ̃1 = {T, P}a,E ux, ψ̃1 =
∫ x

0
φ̃2(s)ds,

φ̃2 = {u, T, P}a,E,c ψ̃2 = u.

Similar arguments as above prove the set {φ̃0, φ̃1, φ̃2} is indeed a basis for the generalized
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periodic null-space of ∂xL[u] if {T, P}a,E and {T, M, P}a,E,c are non-zero. However, we

will assume throughout the rest of this chapter that {T, M}a,E 6= 0. In Chapter 3 we

will prove that {T,M}a,E > 0 in the case of the KdV equation, and the asymptotics

from the previous section show the same conclusion sufficiently close, but beneath, the

solitary (homoclinic) wave.

Remark 4. It is worth remarking in some detail on the physical significance of these

conditions and the relationship to the Whitham modulation theory. Obviously (a,E)

are constants of integration arising in the ordinary differential equation defining the

traveling wave for a fixed wave-speed c, and T, M, P are constants of the PDE evolution.

In particular, the constants (a,E, c) parameterize the manifold of periodic traveling wave

solutions of (2.1). One of the main ideas of the Whitham modulation theory is to locally

parameterize the wave by the constants of motion. The non-vanishing of the Jacobians

is exactly what allows one to do this. Non-vanishing of {T, M, P}a,E,c is equivalent to

demanding that locally the map (a,E, c) 7→ (T, M, P ) have a unique C1 inverse - in

other words the conserved quantities (T,M, P ) are good local coordinates for the family

of traveling waves. Similarly non-vanishing of one of {T, M}a,E and {T, P}a,E is, at

least for periodic waves below the separatrix, equivalent to demanding that the matrix




Ta Ma Pa

TE ME PE




have full rank, which is equivalent to demanding that the map (a,E) 7→ (T, M,P ) (at

fixed c) have a unique C1 inverse - in other words two of the conserved quantities give

a smooth parametrization of the family of traveling waves of fixed wave-speed. As long

as E 6= 0 we can use the identities developed in the appendix to eliminate T in favor of

H. Thus in the case E 6= 0 (which does not include the solitary wave) the null-space

being two dimensional is equivalent to two of the conserved quantities (M, P,H) giving a

C1 parametrization of the traveling wave solutions at constant wavespeed, and the space

N((J0L0[u])2)−N(J0L0[u]) being one dimensional is equivalent to the three conserved

quantities (M, P, H) giving a C1 parametrization of the full family of traveling waves.
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Notice it follows the vanishing of {T,M,P}a,E,c is connected with a change in the

Jordan structure of the linearized operator J0L0[u] considered on H: {T, M,P}a,E,c 6= 0

ensures the existence of a non-trivial Jordan piece in the generalized null space of of

dimension exactly one. Moreover, it guarantees that the variations in the constants

associated to the family of traveling wave solutions by reducing (2.1) to quadrature are

enough to generate the entire generalized periodic null space of the operator J0L0[u].

Henceforth, we shall assume {T,M,P}a,E,c 6= 0 and that {T, M}a,E 6= 0 - by our above

remarks, trivial modifications are necessary if {T,M}a,E vanishes but {T, P}a,E does

not.

2.7.2 Analyticity of Eigenvalues Bifurcating from µ = 0

Our next goal is to consider the operator JγLγ [u] for small γ, treating it as a small

perturbation of J0L0[u]. To this end, notice that if we define L0 := J0L0[u], L1 :=

L0[u]− 2∂2
x, and L2 := −3∂x, it follows that

JγLγ [u] = L0 + εL1 + ε2L2 − ε3,

where ε is related to the Floquet exponent via ε = iγ
T . By Proposition 4, we know

the operator L0 has three periodic eigenvalues at the origin. Our present goal is to

determine how these eigenvalues bifurcate from the γ = 0 state. In this section we

only sketch the relevant details - for similar calculations see the papers of Ivey and

Lafortune[38], or Kapitula, Kutz and Sanstede.[40]

Since the Hilbert space H consists of T-periodic functions, eigenvalues of JγLγ [u]

correspond to 1 being an eigenvalue of the monodromy operator Φ(T ;µ, ε) for to the

eigenvalue problem JγLγ [u]v = µv. Thus, it is natural to introduce the following

“modified” periodic Evans function

D0(µ, ε) = det (Φ(T ;µ, ε)− I) .

Notice that D0(µ, ε) is clearly an analytic function of the two complex variables µ and
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ε. Our first goal then is to analyze the possible behavior of the solutions of D0(µ, ε) = 0

in a small neighborhood of (0, 0).

Lemma 6. Let F (x, y) be a complex valued function of two complex variables x and y

which is analytic in a neighborhood of (0, 0) ∈ C2. Moreover, suppose that F (0, 0) =

Fx(0, 0) = Fxx(0, 0) = 0, Fxxx(0) 6= 0, and Fy(0, 0) = 0. Then for small y, the equation

F (x, y) = 0 has three roots in a neighborhood of the origin. Moreover, these roots

are given by (x, y) = (fj(y), y), j = 1, 2, 3, where the fj satisfy one of the following

conditions:

(i) One function fj can be expressed as a Puiseux series as fj(y) =
∑∞

n=1 aj
nyn/2 in

a neighborhood of y = 0, where a1 6= 0.

(ii) Two of the functions fj admits a Puiseux series representation of the form fj(y) =
∑∞

n=2 aj
nyn/3 in a neighborhood of y = 0, where a2 6= 0.

(iii) All three functions fj are O(ε) and are analytic in y in a neighborhood of y =

0, i.e. they can be represented as fj(y) =
∑∞

n=1 aj
nyn where a1 6= 0 assuming

Fyyy(0, 0) 6= 0.

In the case (iii), if Fyyy(0, 0) = 0 then all three eigenvalues are analytic in ε, with two

eigenvalues of order O(|ε|) and the remaining eigenvalue or order at least O(|ε|2).

Proof. By the Weierstrass preparation theorem, the function F (x, y) can be expressed

as

F (x, y) =
(
x3 + η2(y)x2 + η1(y)x + η0(y)

)
h(x, y)

for small x and y, where each ηj is analytic, and h is analytic satisfying h(0, 0) 6= 0.

It follows the three roots of F (x, y) near (0, 0) are determine by the cubic polynomial

G(x, y) = x3 + η2(y)x2 + η1(y)x + η0(y). By hypothesis, we have that ηj(0) = 0 for

j = 0, 1, 2, η′0(0) = 0, and η′′′0 (0) 6= 0. The lemma now follows by analyzing the

corresponding Newton diagram.

We now wish to apply Lemma 6 to the equation D0(µ, ε) = 0, with x = µ and y = ε,

and use the Fredholm alternative to show only possibility (iii) can occur. Notice that
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Theorem 8 implies ∂k

∂µk D0(µ; 0) = 0 for k = 0, 1, 2 and, moreover, ∂3

∂µ3 D0(µ; 0) 6= 0 under

the assumption {T, M, P}a,E,c 6= 0. To apply Lemma 6 then, we need the following

lemma.

Lemma 7. We have ∂
∂εD0(0, 0) = 0.

Proof. This proof proceeds much like that of Theorem 8. Defining W (x; µ, ε) to be the

solution matrix to the first order system corresponding to JγLγ [u]v = µv written in the

basis Yi(x) defined in (2.23), arguments similar to those above yield for small ε

det (W (T ; 0, ε)−W (0; 0, ε)) =




O(|ε|) O(|ε|) O(|ε|)
O(|ε|) V ′(u−)Ta +O(|ε|) V ′(u−)TE +O(|ε|)
O(|ε|) O(|ε|) O(|ε|)




,

and hence D0(0, ε) = O(|ε|2) as claimed.

We are now in position to prove our main result of this section. By the above

work, we can apply lemma 6 to the equation D0(µ, ε) = 0. The next theorem uses the

Fredholm alternative to discount possibilities (i) and (ii) from Lemma 6, and establish

the analyticity of the eigenvalues near µ = 0. Basically this amounts to checking that

(generically) the null-space of the linearized operator has the same Jordan structure as

the monodromy map at the origin.

Theorem 9. For small ε, the linear operator JγLγ [u] has three eigenvalues which bi-

furcate from µ = 0 and are analytic in ε.

Proof. The idea of the proof is to systematically discount possibilities (i) and (ii) from

lemma 6, thus leaving only the third possibility. First, suppose case (i) holds. It follows

from the Dunford calculus that we can expand the eigenvalues and eigenfunctions as





µ = ε1/2ν1 + εν2 +O(|ε|3/2),

v = f0 + ε1/2f1 + εf2 +O(|ε|3/2).

We will show the assumption that {T,M,P}a,E,c 6= 0 implies ν1 = 0, which yields the

desired contradiction. Using the above expansions of v, µ and JγLγ [φ] in terms of ε, the
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leading order equation becomes L0f0 = 0. Thus, f0 = b0φ0 + b1φ1 for some b0, b1 ∈ C.

Continuing, the O(|ε|1/2) equation turns out to be L0f1 = ν1f0. Suppose ν1 6= 0. By the

Fredholm alternative, this equation is solvable in H if and only if b0φ0 + b1φ1 ⊥ N(L†0).

Clearly, φ1 ⊥ N(L†0) since φ1 ∈ Range(L0). Moreover, by Lemma 4 φ0 /∈ N(L†0)
⊥ and

hence we must have b0 = 0 and, with out loss of generality, we take b1 = 1. It follows

that f1 must satisfy the equation

L0f1 = ν1φ1,

i.e. f1 = ν1φ2 + b2φ0 + b3φ1 for some constants b2, b3 ∈ C.

Continuing in this fashion, the O(|ε|) equation becomes

L0f2 = ν1f1 + ν2f0 − L1f0.

By the Fredholm alternative, this is solvable if and only if

〈ψ0, ν1f1 + ν2f0 − L1f0〉 = 0 and

〈ψ2, ν1f1 + ν2f0 − L1f0〉 = 0.

By above, f0 is an odd function and since L1 preserves parity, the solvability condition

implies we must require 〈ψ0, f1〉 = 〈ψ2, f1〉 = 0. However, this is a contradiction since

〈ψ2, φ2〉 = 1
2{T, M}a,E{T, M, P}a,E,c and hence it must be that ν1 = 0 as claimed.

Thus, possibility (i) can not occur.

Next, assume case (ii) of lemma 6 holds. Then the Dunford calculus again implies

the eigenvalues and eigenvectors can be expanded in a Puiseux series of the form





µ = ω1ε
2/3 + ω2ε

4/3 +O(|ε|2),
v = w0 + ε2/3w1 + ε4/3w2 +O(|ε|2).

Our goal again is to prove the assumptions {T,M,P}a,E,c 6= 0 and {T, M}a,E 6= 0 imply

ω1 = 0. Substituting these expansions into JγLγ [u]v = µv as before, the leading order
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equation leads to w0 = a0φ0 +a1φ1 and the O(|ε|2/3) equation implies a0 = 0. Without

loss of generality, we assume a1 = 1, so that it follows that w1 = ω1φ2 + a2φ0 + a3φ1.

The solvability condition at O(|ε|4/3) implies that

−ω2
1 〈ψ2, φ2〉 = 0,

which implies ω1 = 0 as above. Thus, case (ii) of Lemma 6 can not occur leaving only

case (iii), which completes the proof.

2.7.3 Perturbation Analysis of spec(JγLγ[u]) near (µ, γ) = (0, 0)

We are now set to derive a modulational stability index in from this operator theoretic

approach. By Theorem 9, it follows that the eigenvalues and eigenvectors are analytic

in ε, and hence admit a representation of the form

v = v0 + v1ε + v2ε
2 +O(|ε|3),

µ = λ1ε + λ2ε
2 +O(|ε|3),

where λ1 6= 0 and v0 is not identically zero. Moreover, our modulational instability

theory will be based on the assumption that the three eigenvalues bifurcating from

the µ = 0 state are distinct: as in the previous section, we will derive a modulational

instability index as the discriminant of a cubic polynomial which determines the first

order piece of the bifurcating eigenvalue. If these leading order pieces are the same,

then the problem requires further expansion in the parameter ε: we will not attempt to

derive this theory here.

At this point, it is tempting to use the functionals Pj := 〈ψj , ·〉 to compute the matrix

action of the operator JγLγ [u] onto the corresponding spectral subspace associated with

Ng(L0). This would convert the above eigenvalue problem for a fixed γ to the problem

of solving the polynomial equation

det
[
M0 + εM1 + ε2M2 +O(ε3)− λP

]
= 0,
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at O(ε2), where Mk = {PiLkφj}i,j and P = {Piφj}i,j . Although this approach has been

used to determine stability in the case where the underlying periodic waves are small

(see [28] and [35]), this approach is flawed in the current case since, as shown below, the

eigenvector v has a non-trivial projection onto Ng(L0)⊥ of size O(ε). Since we have no

information about the range of such a projection, it is unlikely that one can determine

the nature of the spectrum near µ = 0 by computing the matrix action of the operator

JγLγ [u] on H for a general periodic solution of (2.1). Instead, we proceed below by

developing a perturbation theory for such a degenerate eigenvalue problem based on

the Fredholm alternative.

Substituting the analytic representation of the eigenvector and eigenvalue into the

equation JγLγ [u]v = µv, the leading order equation implies v0 ∈ N(L0), i.e. v0 =

c0φ0 + c1φ1 for some c0, c1 ∈ C. At O(|ε|), we get the equation L0v1 = (λ1 − L1)v0,

equipped with the corresponding solvability conditions

0 = 〈ψ0, L0v1〉 = λ1c0 〈ψ0, φ0〉 − c0 〈ψ0, L1φ0〉 − c1 〈ψ0, L1φ1〉 , and

0 = 〈ψ2, L0v1〉 = −c0 〈ψ2, L1φ0〉 − c1 〈ψ2, L1φ1〉 .

It follows that we must require c0 = 0. Indeed, from the parity relation 〈ψi, Lkφj〉 = 0

if i + j + k = 0 mod(2), and the relations 〈ψ0, φ0〉 = {T, M}a,E 6= 0 and 〈ψ0, L1φ0〉 =

TE 6= 0, we either have c0 = 0 or all three eigenvalues bifurcating from µ = 0 have the

same leading order non-zero real part, which is not allowed by our assumption that the

three branches of spectrum are distinct. With out loss of generality, we then set c1 = 1

and fix the normalization

〈ψ1, v〉 = 〈ψ1, v0〉 = −1
2
{T, M}a,E{T,M, P}a,E,c

for all ε. It follows that v0 = φ1 and hence v1 satisfies the equation

L0v1 = (λ1 − L1)φ1.
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Notice that L1v0 = −2{T, M}a,Euxxx does not belong to Ng(L0), and hence the eigen-

function v has a non-trivial projection onto Ng(L0)⊥ of size O(ε), as claimed above.

We now define L−1
0 on R(L0) with the requirement that R(L−1

0 ) is orthogonal to

span{ψ0, ψ1}. This requirement ensures that L−1
0 f is well-defined and unique for all

f ∈ R(L0). In particular, it allows us to compute the projection of L−1
0 f onto N(L0)

for each f ∈ R(L0). In order to express the explicit dependence of v1 on λ1, we now

write

v1 = L−1
0 (λ1 − L1) φ1 + c2φ0 + c3φ1 (2.37)

for some c1, c3 ∈ C. The above normalization condition implies 〈ψ1, v1〉 = 0, i.e.

0 =
〈
ψ1, L

−1
0 (λ1 − L1)φ1

〉
+ c3 〈ψ1, φ1〉 .

It follows c3 = 0 by the definition of L−1
0 and the fact that

〈ψ1, φ1〉 = −{T,M}a,E{T,M, P}a,E,c 6= 0.

Continuing, the O(|ε|2) equation is

L0v2 = −L1v1 − L2v0 + λ1v1 + λ2v0

with corresponding solvability conditions

0 = −〈ψ0, L1v1〉 − 〈ψ0, L2v0〉+ λ1 〈ψ0, v1〉 , and

0 = −〈ψ2, L1v1〉 − 〈ψ2, L2v0〉+ λ1 〈ψ2, v1〉 .

Using the explicit dependence of v1 on λ1 and c2, it follows that we can express the

above solvability conditions as

P1(λ1) + P̃1(λ1)c2 = 0 and

P2(λ1)− P0(λ1)c2 = 0.
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where P1 and P̃1 are linear polynomials, P0 is a constant, and P2 is a quadratic poly-

nomial. As this is an over determined system of linear equations for c2, the consistency

condition

P (λ1) := P0(λ1)P1(λ1) + P̃1(λ1)P2(λ1) = 0

must hold. In particular, this expresses λ1 as a root of a cubic polynomial with real

coefficients. Since ε is purely imaginary, modulational stability follows if and only if

P (λ) has three real roots, and hence it must be that ∆(f ; u) is a positive multiple of

the discriminant of the cubic polynomial P (λ). Notice that one can explicitly calculate

P (λ) for a general non-linearity using just the definitions of the φj and ψj , except for

the inner products
〈
ψ0, L1L

−1
0 L1φ1

〉
and

〈
ψ2, L1L

−1
0 L1φ1

〉
: however, these expressions

are quite daunting and do not seem to contribute to the overall understanding of the

structure of the modulational instability index. It follows that we can explicitly write

down the compatibility condition P (λ1) = 0 only in terms of the underlying periodic

solution u and terms built up out of the generalized null spaces of L0 and L†0 acting on

L2
per([0, T ]). Since the roots of this polynomial determine the structure of spec(JγLγ [u])

in a neighborhood of the origin, we have proven the following theorem.

Theorem 10. The periodic solution u = u(x; a,E, c) of (2.1) is spectrally unstable

in a neighborhood of the origin if and only if the discriminant ∆(a,E, c) of the real

cubic polynomial P (λ) is positive. Recall that the discriminant of a cubic P (λ) =

aλ3 + bλ2 + cλ + d is given by ∆ = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd

The above result gives a second characterization of the modulational stability of

periodic solutions to the generalized Korteveg-de Vries equation with power law nonlin-

earity since it is expressed entirely in terms of T, M, P,H and their derivatives, which

in turn can be written as functions of a,E, c via integral type formulae. (These are

hyperelliptic integrals in the case that p is rational). The formulae remain, however,

somewhat daunting. Since this detects the same instability that the Evans function

based criterion does this quantity must have the same sign as the discriminant derived

in that section, although we have not been able to show this.
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To close this section, we now compute the quantities
〈
ψ0, L1L

−1
0 L1φ1

〉
and

〈
ψ2, L1L

−1
0 L1φ1

〉
. The first of these can be calculated regardless of the nonlinearity,

but we must restrict to power-law nonlinearity for the computation of the second. The

complexity of these expressions shows why describing the modulational instability index

in this way seems unfeasible.

Proposition 5.
〈
ψ0, L1L

−1
0 L1φ1

〉
= −T{T, K}a,E.

Proof. Define an operator ξ : {g ∈ L2(R/TZ) : 〈g〉 6= 0} → L2(R/TZ) by

ξ(g) = x− T

〈g〉
∫ x

0
g(s)ds.

Then a straight forward computation shows that L†0ξ(φ0) = f ′(u) − c + TET
{T,〈u〉}a,E

. It

follows that

〈
ψ0, L1L

−1
0 L1φ1

〉
= 2{T,M}a,E

〈(
f ′(u)− c

)
, L−1

0 uxxx

〉

= 2{T,M}a,E

〈
L†0ξ(φ0), L−1

0 uxxx

〉

= T 〈φ0, uxx〉

= −T{T, K}a,E

as claimed.

While the above expression holds for an arbitrary nonlinearity, we have found a

closed form expression for
〈
ψ2, L1L

−1
0 L0φ1

〉
only in the case of power non-linearities.

From the evaluation of the modulational instability index via Evans function techniques,

it should be that this inner product is calculable in the general case as well, although

we have yet to be able to do this.

Proposition 6. In the case of a power nonlinearity f(x) = xp+1, we have

〈
ψ2, L1L

−1
0 L1φ1

〉
= −T{T, M}E,c{T, K}a,E

+
2− p

p
{T, M}a,E (M{T, K}a,E − 2{T, M}a,EK)

+ 2c{T, M}a,E{T,M,K}a,E,c.
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Proof. Notice that in the case of power-law nonlinearity, one has

〈
ψ2, L1L

−1
0 L1φ1

〉
= −T{T, M}E,c{T, K}a,E

+ {T, M}a,E

(
(2− p)

〈
up+1, L−1

0 L1φ1

〉− 2c
〈
u, L−1

0 L1φ1

〉)
,

and hence we must evaluate
〈
u, L−1

0 L1φ1

〉
and

〈
up+1, L−1

0 L1φ1

〉
. First, from the defi-

nition of v1 in equation (2.37) it follows that

〈ψ2, v1〉 = λ1

〈
ψ2, L

−1
0 φ1

〉− 〈
ψ2, L

−1
0 L1φ1

〉

= −1
2
λ1{T, M}a,E{T, M, P}a,E,c − {T, M}a,E

〈
u, L−1

0 L1φ1

〉

Moreover, using the fact that ψ2 = L†0ψ1 gives

〈ψ2, v1〉 = 〈ψ1, (λ1 − L1)φ1〉

= λ1 〈ψ1, φ1〉+ 2{T, M}a,E 〈ψ1, uxxx〉

= −1
2
λ1{T, M}a,E{T, M,P}a,E,c − 2{T,M}a,E 〈φ2, uxx〉

= −1
2
λ1{T, M}a,E{T, M,P}a,E,c + {T, M}a,E{T, M,K}a,E,c

and hence
〈
u, L−1

0 L1φ1

〉
= −{T,M,K}a,E,c.

Next, let the functional ξ be as in Lemma 5 and notice that

L†0ξ(u) = f ′(u)− c− T

M

(
pup+1 + a

)
.

It follows that

−Tp

M

〈
up+1, L−1

0 L1φ1

〉
=

〈
L†0ξ(u)− (f ′(u)− c), L−1

0 L1φ1

〉

= 〈ξ(u), L1φ1〉+ 2{T, M}a,E

〈
(f ′(u)− c), L−1

0 uxxx

〉

=
2T{T, M}a,ET

M
K − T{T, K}a,E

which completes the proof.
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Figure 2.4: Cartoon of the spectrum of the linearization of gKdV about a periodic
traveling wave for p = 5, a = 0, E = 0 and three different values of the period (ordered
by increasing period). Thanks to Mariana Hǎrǎguş and Todd Kapitula for supplying
these numerical simulations.

2.8 Concluding Remarks

We’d like to consider a concrete example to illustrate our results. We have chosen to

consider the power law gKdV with p = 5. In this case the solitary wave is unstable and

hence (by Gardner’s result, which we have checked in this case using our methods) peri-

odic waves of sufficiently long period are also unstable. Hǎrǎguş and Kapitula[35] have

done some very nice experiments on this case using the SpectruW[20] package, which

they have been kind enough to share. For clarity we have drawn figures representing

the spectra they computed numerically, rather than reproducing their figures.

The first figure shows a cartoon of the spectrum for short periods - in other words

small amplitude periodic waves. The modulational instability index ∆ < 0 indicating

a modulational instability, while the orientation index {T,M, P}a,E,c > 0. The latter

indicates that the number of eigenvalues on the real axis away from the origin is even.

In this case there are none. The spectrum near the axis looks like a union of three

straight lines. Globally the spectrum looks like the union of the imaginary axis with a

figure eight shaped curve.

As the period increases one sees spectra which resemble the second figure, where

there is a modulational instability together with a pair of eigenvalues along the real

axis. In this case we are still in the case ∆ < 0, indicating a modulational instability,

and {T, M,P}a,E,c > 0 indicating an even number of eigenvalues along the positive real
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axis. The fact that these two very different spectral pictures have the same orientation

and modulational instability indices shows that these quantities alone are not enough to

say qualitatively what the spectral picture looks like, even in this very simple problem

with only one free parameter (the period).

As the period increases still further one sees spectral pictures which resemble the

third picture. As in the previous figure there is an ∞ shaped curve of spectrum con-

nected to the origin indicating a modulational instability (∆ < 0) as well as a circle of

spectrum out on the real axis. This circle is that predicted by Gardner in his paper. As

the period increases and the periodic solution approaches the solitary wave the circle

collapses to a point and the ∞ curve collapses to the origin. The size of both of these

features is exponentially small in the period. In the paper of Kapitula and Hǎrǎguş

the ∞ curve is not visible at the scale of the graph, but it is visible in numerics they

performed for smaller values of period.

Since there is an odd number of eigenvalues on the real axis in this case (one periodic,

two antiperiodic) the orientation index must now be negative {T, M,P}a,E,c < 0. The

general mechanism by which this must occur is clear: a periodic eigenvalue moves down

the real axis, collides with the origin (changing the Jordan structure of the null-space

of the linearized operator, which is again signalled by the vanishing of {T,M,P}a,E,c)

and moves off along the real axis. However the exact way in which this occurs is

not quite clear. It is somewhat puzzling that the Evans function based calculation

gives a substantially simpler criteria for the existence of a modulational instability than

one based on a direct analysis of the linearized operator. It must be true that the

two discriminants we’ve derived always have the same sign, as the predict the same

phenomenon, but we have been unable to see this directly from the formulae. Often

when apparently unconnected quantities share a sign this sign has a topological or

geometric interpretation (for example as a Krein signature), so this may well be the

case here. Such an interpretation would be very interesting.
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CHAPTER 3

Orbital Stability of Periodic Solutions of the gKdV

In this chapter, we study the orbital stability for a four-parameter family of periodic

stationary traveling wave solutions to the generalized Korteweg-de Vries (gKdV) equa-

tion

ut = uxxx + f(u)x.

In particular, we derive sufficient conditions for such a solution to be orbitally stable

(in a suitable sense) in terms of the Hessian of the classical action of the corresponding

traveling wave ordinary differential equation restricted to the manifold of periodic trav-

eling wave solution. We show this condition is equivalent to the solution being spectrally

stable with respect to perturbations of the same period in the case when f(u) = u2 (the

Korteweg-de Vries equation) and in neighborhoods of the homoclinic and equilibrium

solutions if f(u) = up+1 for some p ≥ 1.

3.1 Introduction

This chapter concerns the stability analysis of periodic traveling wave solutions of the

generalized Korteweg-de Vries (gKdV) equation

ut = uxxx + f(u)x (3.1)

where f is a sufficiently smooth non-linearity satisfying certain convexity assumptions.

Probably the most famous equation among this family is given by f(u) = u2, in which

case (3.1) corresponds to the Korteweg-de Vries (KdV) equation. The KdV serves as an

approximate description of small amplitude waves propagating in a weakly dispersive
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media. Other choices of the nonlinearity f arise in various applications, such as internal

waves and plasmas. Thus, to ensure general application of the forthcoming theory we

find it beneficial to consider general nonlinearities in (3.1).

It is well known that the gKdV equation admits traveling wave solutions of the form

u(x, t) = uc(x + ct), x ∈ R, t ∈ R (3.2)

for wave speeds c > 0. Historically, there has been much interest in the stability of

traveling solitary waves of the form (3.2) where the profile uc decays exponentially to

zero as its argument becomes unbounded. Such waves were initially discovered by Scott

Russell in the case of the KdV where the traveling wave is termed a soliton. While

(3.1) does not in general possess exact “soliton” solutions, which requires complete

integrability of the partial differential equation, exponentially decaying traveling wave

solutions still exist. Moreover, the stability of such solitary waves is well understood and

dates back to the pioneering work of Benjamin [7], which was then further developed

by Bona [10], Grillakis [31], Grillakis, Shatah and Strauss [32, 33], Bona, Souganides

and Strauss [11], Pego and Weinstein [56, 57], Weinstein[62, 63], and many others. In

this theory, it is shown that traveling solitary waves of (3.1) are orbitally stable if the

solitary wave stability index
∂

∂c

∫ ∞

−∞
u2

c dx (3.3)

is positive, and is orbitally unstable if this index is negative. In the case where (3.1) has

a power-law nonlinearity f(u) = up+1, the sign of this stability index is positive if p < 4

and is negative if p > 4. Moreover, in [56, 57] it was shown that the mechanism for this

instability is as follows: Linearizing the traveling wave partial differential equation

ut = uxxx + f(u)x − cux, (3.4)

which is satisfied by the traveling solitary wave profile, about the solution uc and taking

94



the Laplace transform in time leads to a spectral problem of the form

∂xL[uc]v = µv

considered on the real Hilbert space L2(R), where L[uc] is a second order self adjoint

differential operator with asymptotically constant coefficients. The authors then make a

detailed study of the Evans function D(µ), which is an analytic function such that if ψ is

a solution of (3.4) satisfying ψ(x) ∼ eωx as x →∞, then ψ(x) ∼ D(µ)eωx as x → −∞:

in essence, D(µ) plays the role of a transmission coefficient familiar from quantum

scattering theory. This approach motivated by the fact that for Re(µ) > 0 the vanishing

of D(µ) implies that µ is an L2 eigenvalue of the linearized operator ∂xL[uc], and

conversely. Pego and Weinstein were able to use this machinery to prove that the

Evans function satisfies

lim
µ→+∞ sign(D(µ)) > 0

as well as the asymptotic relation

D(µ) = C1

(
∂

∂c

∫ ∞

−∞
uc(x)2dx

)
µ2 + o(|µ|2)

in a neighborhood of µ = 0, for some positive constant C1. Thus, in the case when the

solitary wave stability index is negative, it follows by the continuity of D(µ) for µ ∈ R+

that D(µ) < 0 for small positive µ and hence D(µ) must have a positive root, thus

proving exponential instability of the underlying traveling solitary wave in this case.

In this paper, however, we are concerned with traveling wave solutions of (3.1) of

the form (3.2), where this time we require the profile uc be a periodic function of its

argument. In contrast to the traveling solitary wave theory, relatively little is known

concerning the stability of periodic traveling waves of nonlinear dispersive equations

such as the gKdV. Existing results usually come two types: spectral stability with

respect to localized or bounded perturbations, and orbital (nonlinear) stability with

respect to periodic perturbations. Most spectral stability results seem to rely on a

Floquet-Bloch decomposition of the linearized operator and a detailed analysis of the
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resulting family of spectral problems, or else perturbation techniques which analyze

modulational instability (spectrum near the origin).

There is a fairly substantial amount of literature devoted to the stability of the

cnoidal solutions of the KdV

u(x, t) = u0 + 12k2κ2 cn2
(
κ

(
x− x0 +

(
8k2κ2 − 4κ2 + u0

)
t
)
, k

)
,

where k ∈ [0, 1) and κ, x0, and u0 are real constants. Such cnoidal solutions of the KdV

have been studied by McKean [50], and more recently in papers by Pava, Bona, and

Scialom [2] and by Bottman and Deconinck [12]. The results in [50] uses the complete

integrability of the KdV in his study of the periodic initial value problem in order to

show nonlinear stability of the cnoidal solutions to perturbations of the same period.

Also using the machinery of complete integrability, in [12] the spectrum of the linearized

operator on the Hilbert space L2(R) is explicitly computed and shown to be confined

to the imaginary axis. In particular, it follows that cnoidal solutions of the KdV are

spectrally stable to perturbations of the same period, and more generally, perturbations

with periods which are integer multiples of the period of the cnoidal wave.

Returning to the generalized KdV equation (3.1), spectral stability results have

recently been obtained by Hǎrǎguş and Kapitula [35] where the spectral stability of

small amplitude periodic traveling wave solutions of (3.1) with f(u) = up+1 was studied.

By using a Floquet-Bloch decomposition of the linearized spectral problem, the authors

found that such solutions are spectrally stable if p ∈ [1, 2) and exhibit a modulational

instability if p > 2. In particular, they found that such solutions are always spectrally

stable to perturbations of the same period: in section 3.5, we will verify and extend

this result through the use of the periodic Evans function. Recall from chapter 2 that

we have already derived a stability index in a manner quite similar to the solitary

wave theory outlined above such that the negativity of this index implies exponential

instability of the periodic traveling wave with respect to perturbations of the same

period. The relevant results of this analysis will be briefly reviewed in section 3.3.

It seems natural to consider the role this periodic instability index derived in [16]
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plays in the nonlinear stability of the periodic traveling wave. As mentioned above,

the analogue of this index controls the nonlinear stability in the solitary wave context.

Thus, one would like the periodic traveling wave to be nonlinearly stable whenever the

aforementioned periodic stability index positive. While we are able to show this is true

in certain cases, we find that two other quantities, which are essentially not present in

the spectral stability theory1 nor the solitary wave theory, play a role in the nonlinear

stability. This is the content of our main theorem, which is stated below 2.

Theorem 11. Let u(x+c0t) be a periodic traveling wave solution of (3.1), corresponding

to an (a0, E0, c0) ∈ Ω. Moreover, assume the principle minors of the matrix

D2
E,a,cK(a,E, c) =




TE Ta Tc

ME Ma Mc

PE Pa Pc




, (3.5)

satisfy d1 = TE > 0, d2 = TEMa −METa < 0 and d3 = det(D2
E,a,cK(a,E, c)) < 0 at

(a0, E0, c0), where K(a, E, c) is the classical action of the ODE governing the traveling

waves. Then there exists C0 > 0 and ε > 0 such that for all φ0 ∈ X with ‖φ0‖X < ε,

the solution φ(x, t) of (3.1) with initial data φ(x, 0) = u(x) + φ(x) satisfies

inf
ξ∈R

‖φ(·, t)− u(x + c0t + ξ)‖X ≤ C0‖φ0‖X

for all t > 0.

Remark 5. Throughout this paper “orbital stability” will always mean orbital stabil-

ity with respect to periodic perturbations, i.e. perturbations of the same period as the

underlying wave.

Moreover, recall the from Lemma 10 from chapter 2, the quantity TE is positive on

Ω for a large class of nonlinearities. Thus, in many cases one must only determine

the signs of the quantities d2 and d3 in the above theorem in order to conclude orbital
1This is not quite correct. They are present, but their signs do not play into the spectral stability

theory. See section 3.3 for more details.
2For the definition of the real Hilbert space X, see section 3.4.
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stability.

Remark 6. Notice that Theorem 11 provides no information in the case when either

TE is negative or when {T,M}a,E is negative. In the previous chapter, we showed the

condition d3 > 0 implies spectral instability of the periodic wave to perturbations of

the same period: this work will be reviewed in the next section. Moreover, we saw the

condition TE > 0 was used to infer that any unstable T -periodic eigenvalues of the

linearized operator are real: if TE < 0, we seemingly no longer have this restriction.

The quantity {T,M}a,E is not present in the spectral stability calculation, and hence

may provide a mechanism for orbital instability in the presence of spectral stability.

Recently, Deconinck and Kapitula [19] have proven results on the orbital stability

of periodic solutions of the gKdV by relating the stability to the number of negative

eigenvalues of two associated operators: the restriction of the operator L[u] to a class of

mean free T -periodic functions, and another quantity which ends up being precisely d3.

Their methods are very different from those presented in this chapter, and by mixing

the two methods together an extension of the work here may be possible to determine

when stability is possible if either either TE or {T,M}a,E, or both, are negative.

The outline for this paper is as follows. In section 3.2, we will recall the recent

results of chapter 2 concerning the spectral stability of periodic traveling wave solutions

of (3.1) with respect to perturbations of the same period. The resulting instability index

will play an important role throughout the rest of the paper. Section 3.3 is devoted

to the proof of Theorem 11. Finally, two applications of our theory are described in

sections 3.4 and 3.5 in the case of a power-law nonlinearity f(u) = up+1 for p ≥ 1. In

section 3.4, we study the orbital stability of periodic traveling wave solutions of (3.1)

in neighborhoods of the homoclinic and equilibrium solutions. Section 3.5 is devoted to

the application of our theory to the case of the KdV. In particular, it is shown that such

solutions are orbitally stable if and only if they are spectrally stable to perturbations

of the same period as the underlying wave.
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3.2 Spectral Stability Analysis

In this section, we recall the relevant results of chapter 2 on the spectral stability

of periodic-traveling wave solutions of the gKdV. Suppose that u = u( · ; a,E, c) ∈
C3(R;R) is a T -periodic solution of the traveling wave ODE

uxxx + f(u)x − cux = 0. (3.6)

Linearizing (3.1) about this solution and taking the Laplace transform in time leads to

the spectral problem

∂xL[u]v = µv (3.7)

considered on L2(R;R), where L[u] := −∂2
x − f ′(u) + c is a closed symmetric linear

operator with periodic coefficients. In particular, since u is bounded it follows that L[u]

is in fact a self-adjoint operator on L2(R) with densely defined domain C∞(R). Notice

that considering (3.7) on L2(R) corresponds to considering the spectral stability with

respect to localized perturbations3, and as a result the spectrum spec (∂xL[u]) is purely

continuous. Moreover, the Hamiltonian nature of (3.7) implies that such a solution is

spectrally stable if and only if spec (∂xL[u]) ⊂ Ri.

In order to study the spectrum of the operator ∂xL[u] we note that (3.7) can be

written as first order system of the form Φx = H(x, µ)Φ. We define the monodromy

matrix to be the corresponding matrix solution with initial condition Φ(0) = I, where I

is the 3× 3 identity matrix It follows that µ ∈ spec (∂xL[u]) if and only if there exists a

non-trivial bounded function ψ such that ∂xL[u]ψ = µψ or, equivalently, if there exists

a λ ∈ C with |λ| = 1 such that the periodic Evans function

D(µ, λ) = det (M(µ)− λI)

vanishes: see section 1.2 of the introduction. In particular we see that D(µ, 1) detects

spectra which corresponds to perturbations which are T -periodic. perturbations of the
3One could also study the spectral stability with respect to uniformly bounded perturbations, but

by standard results in Floquet theory the resulting theories are equivalent.
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same period. To study such instabilities, we recall the following result.

Lemma 8. The function D(µ, 1) satisfies the following properties:

1. D(µ, 1) is an odd function of µ.

2. The limit limµ→∞ sign (D(µ, 1)) exists and is negative.

3. The asymptotic relation

D(µ, 1) = −1
2
{T, M, P}a,E,c µ3 +O(|µ|4).

holds in a neighborhood of µ = 0.

The main idea is that the integrability of the ODE (3.6) governing the traveling

waves immediately allows direct computation of the tangent space of the manifold of

traveling wave solutions at µ = 0. As such, the calculation is undoubtedly related to

the multi-symplectic formalism of Bridges: see [14]. It follows that if {T,M, P}a,E,c

is negative then the number of positive roots of D(µ, 1) is odd and hence one has

exponential instability of the underlying periodic traveling wave. Moreover, we will

show in Lemma 10 that TE > 0 implies L[u] has exactly one negative eigenvalue. It

follows from that the linearized operator ∂xL[u] has at most one unstable eigenvalue

with positive real part, counting multiplicities (see Theorem 3.1 of [57]) if TE > 0. Since

the spectrum of ∂xL[u] is symmetric about the real and imaginary axis, it follows that

all unstable periodic eigenvalues of the linearized operator must be real. This proves the

following theorem, which is the main theorem of chapter 2 relating to spectral stability

to periodic perturbations.

Theorem 12. Let u(x; a0, E0, c0) be a periodic traveling wave solution of (2.1), and

suppose that TE is positive and {T, M, P}a,E,c is non-zero at (a0, E0, c0). Then the solu-

tion is spectrally stable to perturbations of the same period if and only if {T,M, P}a,E,c

is positive at (a0, E0, c0).

In the next section, we will show that if TE < 0 the operator L[u] has two negative

eigenvalues. Thus, even if {T, M, P}a,E,c > 0 in this case, there is no way of proving
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from these methods whether the number of periodic eigenvalues of ∂xL[u] with positive

real part is equal to zero or two. Moreover, by drawing a direct analogy with the solitary

wave theory one would suspect if TE > 0, then such solutions of (3.1) are nonlinearly

stable if and only if {T, M, P}a,E,c is positive4, i.e. if and only if it is spectrally stable

to perturbations of the same period. However, this seems not to be true in general: the

sign of the Jacobian {T,M}a,E also plays a role in the orbital stability analysis, even

though it does not seem to play into the periodic spectral stability theory at all5. This

stands in stark contrast to the solitary wave theory.

3.3 Orbital Stability

In this section, we prove our main theorem on the orbital stability of periodic traveling

wave solutions of (3.1). Our proof follows the general method of Bona, Souganidis and

Strauss [11], and that of Grillakis, Shatah and Strauss [32, 33]: the goal is to show that

a given periodic traveling wave solution of the gKdV is a constrained minimizer of a

particular augmented energy functional. To this end, the majority of the work is dedi-

cated to proving an appropriate coercive estimate on the augmented energy functional.

Once this estimate is established, the orbital stability proof is straightforward.

Throughout this section, we assume we have a T -periodic traveling wave solution

u(x; a0, E0, c0) of equation (3.1), i.e. we assume u satisfies

1
2
u2

x + F (u)− c0

2
u2 − a0u = E0 (3.8)

with (a0, E0, c0) ∈ Ω and T = T (a0, E0, c0). Moreover, we assume the non-linearity f

present in (3.1) is such that the Cauchy problem for (3.4) is globally well-posed in a

real Hilbert space X of real valued T periodic functions defined on R, which we equip
4In sections 5 and 6, we study cases where this is indeed the case.
5One could suspect that {T, M}a,E changes sign only when {T, M, P}a,E,c does, but this is shown

not be the case in Corollary 5
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with the standard L2([0, T ]) inner product

〈g, h〉 :=
∫ T

0
g(x)h(x)dx

for all g, h ∈ X, and we identify the dual space X∗ through the pairing

〈g, h〉∗ =
∫ T

0
g(x)h(x)dx

for all g ∈ X∗ and h ∈ X. In particular, notice that L2([0, T ]) is required to be a

subspace of X. For example, if f(u) = u3/3, corresponding to the modified Korteweg-

de Vries equation, then the Cauchy problem for (3.4) is globally well-posed in the space

Hs
per([0, T ];R) = {g ∈ Hs([0, T ];R) : g(x + T ) = g(x) a.e.}

for all s ≥ 1
2 , where we identify the dual space with H−s

per([0, T ];R) through the above

pairing (see [18] for proof). Moreover, due to the structure of the gKdV, we make the

natural assumption that the evolution of (3.4) in the space X is invariant under a one

parameter group of isometries G corresponding to spatial translation. Thus, G can be

identified with the real line R acting on the space X through the unitary representation

(Rξg)(x) = g(x + ξ)

for all g ∈ X and ξ ∈ G. Since the details of our proof works regardless of the form of

the non-linearity f , we make the above additional assumptions on the nonlinearity and

make no other references to the exact structure of the space X nor f .

In view of the symmetry group G, we now describe precisely what we mean by

orbital stability. We define the G-orbit generated by u to be

Ou := {Rξu : ξ ∈ G}.

Now, suppose we have initial data φ0 ∈ X which is close to the orbit Oε. By orbital
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stability, we mean that if φ(·, t) ∈ X is the unique solution with initial data φ0, then

φ(·, t) is close to the orbit of u for all t > 0. More precisely, we introduce a semi-distance

ρ defined on the space X by

ρ(g, h) = inf
ξ∈G

‖g −Rξh‖X ,

and use this to define an ε-neighborhood of the orbit Ou by

Uε := {φ ∈ X : ρ(u, φ) < ε}.

The main result of this section is the following reformulation of Theorem 11.

Proposition 7. Let u(x) = u(x; a0, E0, c0) solve (3.8) and suppose the quantities TE,

{T, M}a,E, and {T, M, P}a,E,c are positive at (a0, E0, c0). Then there exists positive

constants C0, ε0 such that if φ0 ∈ X satisfies ρ(φ0, u) < ε for some ε < ε0, then the

solution φ(x, t) of (3.1) with initial data φ0 satisfies ρ(φ(·, t), u) ≤ C0ε.

Remark 7. Notice that Theorem 12 implies a periodic solution u(x; a0, E0, c0) of (2.5)

is an exponentially unstable solution of (3.1) if {T,M,P}a,E,c is negative at (a0, E0, c0).

Thus, the positivity of this Jacobian is a necessary condition for nonlinear stability.

Remark 8. Since the gKdV is a conservative system, one expects that the orbital sta-

bility in Theorem 7 is the strongest one could prove: in non-conservative systems (which

might contain resistive terms such as friction) it would be natural to ask whether the

solution is asymptotically stable, that is, if the perturbed solution actually converges

back to the original solution. With out the presence of a resistive or forcing term, how-

ever, such a stability result for the gKdV seems unlikely, unless one studies asymptotic

stability in possibly weighted Lp spaces as in the solitary wave theory (see [55]).

Before we prove Proposition 7 we wish to shed some light on the hypotheses. Recall

that the classical action K(a,E, c) of the periodic traveling wave satisfies

Da,E,cK(a,E, c) =
(

M(a,E, c), T (a,E, c),
1
2
P (a,E, c)

)
.
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As a result, we can write its Hessian as

D2
a,E,cK(a,E, c) =




Ma ME Mc

Ta TE Tc

Pa PE Pc




.

Proposition 7 thus states that if (a0, E0, c0) ∈ Ω, the corresponding periodic trav-

eling wave solutions of (3.1) is orbitally stable if the principle minor determinants of

D2
a,E,cK(a,E, c) satisfy d1 = TE > 0, d2 = {M, T}a,E < 0, and d3 = {M,T, P}a,E,c < 0.

It is clear that a necessary condition for this claim is that the Hessian D2
a,E,cK(a,E, c) is

invertible with precisely one negative eigenvalue. However, this is clearly not sufficient.

We now proceed with the proof of Proposition 7. We define the following func-

tionals on the space X, which correspond to the “energy”, “mass” and “momentum”

respectively:

E(φ) :=
∫ T

0

(
1
2
φx(x)2 − F (φ(x))

)
dx

M(φ) :=
∫ T

0
φ(x) dx

P(φ) :=
1
2

∫ T

0
φ(x)2dx.

These functionals represent conserved quantities of the flow generated by (3.1). In

particular, if φ(x, t) is a solution of (3.1) of period T , then the quantities E(φ(·, t)),
M(φ(·, t)), and P(φ(·, t)) are constants in time. Also, notice that E(u) = H(a0, E0, c0),

M(u) = M(a0, E0, c0), and P(u) = P (a0, E0, c0) where H, M and P are defined in

(2.9)-(2.11).

Remark 9. Throughout the remainder of this paper, the symbols M and P will denote

the functionals M and P restricted to the manifold of periodic traveling wave solutions

of (3.1) with (a,E, c) ∈ Ω.

Remark 10. Calculations in similar vein have been carried out recently in the spe-

cial cases of cnoidal solutions of the KdV [2], as well as for traveling wave solutions
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of the modified KdV arising from (3.1) with f(u) = u3 [1]. In each of these cases,

however, it was assumed that a = 0, or equivalently that M(a,E, c) = 0. While this is

always possible for the KdV (due to Galilean invariance), this is not possible for general

nonlinearities without restricting your admissible class of traveling wave solutions, i.e.

restricting Ω. As we are interested in deriving universal conditions for stability of trav-

eling wave solutions of (3.1), we are forced to work with all three functionals defined

above.

It is easily verified that E , M and P are smooth functionals on X, whose first

derivatives are smooth maps from X to X∗ defined by

E ′(φ) = −φxx − f(φ), M′(φ) = 1, P ′(φ) = φ.

If we now define an augmented energy functional on the space X by

E0(φ) := E(φ) + c0P(φ) + a0M(φ) + E0T (3.9)

it follows from (3.8) that E0(u) = 0 and E ′0(u) = 0. Hence, u is a critical point of the

functional E0.

Remark 11. Notice that the added factor of E0T on the right hand side of (3.9) is

not technically needed for our calculation. However, we point out that (formally) if we

consider variations in E0 in the period we obtain

∂

∂T
E0(φ)

∣∣
φ=u

=
1
2
u2

x(T )− F (u(T )) + au(T ) + E +
〈
E ′0(u),

∂u

∂T

〉

=
1
2
u2

x(T ) +
1
2
u2

x(T ) +
〈
E ′0(u),

∂u

∂T

〉

= 0

since ux(T ) = 0 and E ′0(u) = 0. Hence u is also (formally) a critical point of the

modified energy with respect to variations in the period. It would be very interesting to

try to make this calculation rigorous and to see if it allows one to extend orbital stability
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results to include perturbations with period close to the period of the underlying periodic

wave. Again, this is all very formal and we will make no attempt at such a theory here.

To determine the nature of this critical point, we consider its second derivative E ′′0 ,

which is a smooth map from X to L(X, X∗) defined by

E ′′0 (φ) = −φxx − f ′(φ) + c0.

This formula immediately follows by noticing the second derivatives of the mass, mo-

mentum, and energy functionals are smooth maps from X to L(X, X∗) defined by

E ′′(φ) = −∂2
x − f ′(φ), M′′(φ) = 0, P ′′(φ) = 1.

In particular, notice the second derivative of the augmented energy functional E0 at the

critical point u is precisely linear operator L[u] arising from linearizing (3.4) with wave

speed c0 about u. It follows from the comments in the previous section that E ′′0 (u) is a

self-adjoint linear operator on L2
per([0, T ];R) with compact resolvent. In order to classify

u as a critical point of E0, we must understand the nature of the spectrum of the second

variation L[u]: in particular, we need to know the number of negative eigenvalues. This

is handled in the following lemma.

Lemma 9. The spectrum of the operator L[u] considered on the space L2
per([0, T ]) sat-

isfies the following trichotomy:

(i) If TE > 0, then L[u] has exactly one negative eigenvalue, a simple eigenvalue at

zero, and the rest of the spectrum is strictly positive and bounded away from zero.

(ii) If TE = 0, then L[u] has exactly one negative eigenvalue, a double eigenvalue at

zero, and the rest of the spectrum is strictly positive and bounded away from zero.

(iii) If TE < 0, then L[u] has exactly two negative eigenvalues, a simple eigenvalue at

zero, and the rest of the spectrum is strictly positive and bounded away from zero.

Proof. This is essentially a consequence of the translation invariance of (3.1) and the

Strum-Liouville oscillation theorem. Indeed, notice that for any ξ ∈ G the function Rξu
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is a stationary solution of (2.6) with wave speed c0 and a = a0. Differentiating this

relation with respect to ξ and evaluating at ξ = 0 implies that L[u]ux = 0. Moreover,

since u is radially increasing on [0, T ] from its local minimum there, ux is periodic with

the same period as u and hence ux ∈ L2
per([0, T ]). This proves that zero is always a

periodic eigenvalue of L[u] as claimed. To see there is exactly one negative eigenvalue,

notice that since u is T -periodic with precisely one local critical point on (0, T ), its

derivative ux must have precisely one sign change over its period. By standard Strum-

Liouville theory applied to the periodic problem (see Theorem 2.14 in [49]), it follows

that zero must be the either the second or third6 eigenvalue of L[u] considered on the

space L2
per(R).

Next, we show that zero is a simple eigenvalue of L[u] on the space L2
per([0, T ])

if and only if TE 6= 0. To this end, notice that the periodic traveling wave solutions

of (2.6) are invariant under changes in the energy parameter E associated with the

Hamiltonian ODE (2.5). As above, it follows that L[u]uE = 0. We must now determine

whether the function uE belongs to the space L2
per([0, T ]). Since it is clearly smooth,

we must only check whether it is periodic with the same period as the underlying wave

u. To this end, we use ux and uE as a basis to compute the monodromy matrix m(0)

corresponding to the equation L[u]v = 0. Notice that differentiating the relation E =

V (u−; a, c) with respect to E and evaluating at (a0, E0, c0) gives ∂u−
∂E V ′(u−; a0, c0) = 1,

and hence ∂u−
∂E is non-zero at (a0, E0, c0). Defining y1(x) =

(
du−
dE

)−1
uE and y2(x) =

− (V ′(u−; a0, c0))
−1 ux(x), it follows from direct calculation that

y1(0) = 1, y2(0) = 0,

y′1(0) = 0, y′2(0) = 1.

Thus, it follows by calculating uE(T ) by the chain rule that we have

m(0) =




1 TE

0 1


 ,

6Clearly, we mean with respect to the natural ordering on R.
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where again we have used the fact that V ′(u−; a, c)∂u−
∂E = 1. Thus, it follows that zero

is a simple eigenvalue of L[u] if and only if TE 6= 0, and that the multiplicity will be

two in the case TE = 0.

Finally, to determine whether µ = 0 is the second or third eigenvalue of L[u], we

note that from the results of [16] we have

sign(TE) = sign ( tr( mµ(0))) . (3.10)

By the oscillation theorem Theorem 5 from chapter 2, it follows that µ = 0 is the second

periodic eigenvalue of L[u] if and only if TE ≥ 0, and the third periodic eigenvalue if

and only if TE < 0. This completes the proof.

Remark 12. If one considers 2T -periodic orbits of (3.6) (say with a power-law non-

linearity) which are outside the separatrix, then the coefficients of the operator L[u] are

T -periodic. In particular, ux is an anti-periodic eigenvalue of the operator ∂xL[u] in

the space X2 := L2
per([0, T ]) and hence there are at least two negative eigenvalues. Since

our methods require the operator ∂xL[u] acting on the space L2
per([0, 2T ]) to have exactly

one negative eigenvalue, this explains why we only consider periodic orbits which do not

bound (non-trivial) homoclinic orbits in the definition of Ω.

In the solitary wave case, the spectrum of the operator L[u] always satisfies (i) in

the above trichotomy. Since E is not restricted to be zero in the periodic context, it is

not surprising that such a non-trivial trichotomy might exist. The next lemma shows

that for a large class of nonlinearities, the period is indeed an increasing function of E

within the region Ω.

Lemma 10. Let (a0, E0, c0) ∈ Ω and u = u( · ; a0, E0, c0) denote the corresponding

periodic solution of (2.5) with wave speed c0 and period T = T (a0, E0, c0). If the non-

linearity f in (3.1) is such that f ′(u) is co-periodic with u, then TE > 0 at (a0, E0, c0).

Proof. If f ′(u) is co-periodic with u, then the operator L[u] is a Hill operator with

even potential with period T = T (a0, E0, c0). Thus, ux is a periodic eigenvalue of
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L[u] which satisfies Dirichlet boundary conditions. Moreover, since ux changes signs

once over (0, T ), it follows that zero is either the second or third periodic eigenvalue of

L[u]. Since the first periodic eigenvalue must be even, and hence must satisfy Neumann

boundary conditions, it follows by Dirichlet-Neumann bracketing [58] that zero must be

the second periodic eigenvalue of L[u]. Using the notation of Lemma 9, it follows that

tr( mµ(0)) > 0 and hence TE > 0 by equation (3.10).

Remark 13. In particular, it follows that if f(u) = up+1 for some p ≥ 1 then the

spectrum of L[u] will satisfy (i) in Lemma 9.

Also, in the case of a power-law nonlinearity an alternative proof of Lemma 10 is

provided by a theorem of Schaaf [60]: the details of this calculation are carried out in

[16].

Throughout the rest of the paper, unless otherwise stated, we will assume that TE >

0 at (a0, E0, c0) and hence zero is a simple eigenvalue of the operator L[u] considered

on the space L2
per(R). In particular, we assume that the map E → T (E, a0, c0) does

not have a critical point at E0. It follows that we can define the spectral projections

Π−, Π0 and Π+ onto the negative, zero, and positive subspaces of the operator L[u]

(respectively) via the Dunford calculus. Thus, any φ ∈ X can be decomposed as a linear

combination of ux, an element in the positive subspace of L[u], and χ, where χ is the

unique positive eigenfunction of L[u] with ‖χ‖L2([0,T ]) = 1 which satisfies

〈L[u]χ, χ〉 = −λ2

for some λ > 0. From the above definition of χ it follows that χ is the eigenfunction

corresponding to the unique negative eigenvalue −λ2 of L[u].

From Lemma 9, we know that u is a degenerate saddle point of the functional E0

on X, with one unstable direction and one neutral direction. In order to get rid of

the unstable direction, we note that the evolution of (3.1) does not occur on the entire
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space X, but on the co-dimension two submanifold defined by

Σ0 := {φ ∈ X : M(φ) = M(a0, E0, c0), P(φ) = P (a0, E0, c0)}.

It is clear that Σ0 is indeed a smooth submanifold of X in a neighborhood of the group

orbit Ou. Moreover, the entire orbit Ou is contained in Σ0. The main technical result

needed for this section is that the functional E0 is coercive on Σ0 with respect to the

semi-distance ρ, which is the content of the following proposition.

Proposition 8. If each of the quantities TE, {T, M}a,E, and {T,M,P}a,E,c are positive,

then there exists positive constants C1, δ which depend on (a0, E0, c0) such that

E0(φ)− E0(u) ≥ C1ρ(φ, u)2

for all φ ∈ Σ0 such that ρ(φ, u) < δ.

The proof of Proposition 8 is broken down into three lemmas which analyze the

quadratic form induced by the self adjoint operator L[u]. To begin, we define a function

φ0 by

φ0(x) := {u(x; a,E, c), T (a, E, c), M(a,E, c)}a,E,c

∣∣
(a0,E0,c0)

.

It follows from a straightforward calculation (see Proposition 4 from chapter 2) that

φ0 ∈ X and

L[u]φ0 = −{T, M}E,c − {T, M}a,Eu,

where the right hand side is evaluated at (a0, E0, c0). This function plays a large role

in the spectral stability theory for periodic traveling wave solutions7 of (3.1) outlined

in section 3.2. In particular, we have ∂xL[u]φ0 = −{T, M}a,Eux, and hence, assuming

{T, M}a,E 6= 0 at (a0, E0, c0), φ0 is in the generalized periodic null space of the linearized

operator ∂xL[u]. Also, our assumption that {T,M,P}a,E,c is non-zero at (a0, E0, c0)

7Actually, the function uc plays a large role in our analysis via the periodic Evans function. However,
since uc is not in general T -periodic due to the dependence of the period on the wave speed, we work
here with its periodic analogue φ0.
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implies that φ0 does not belong to the set

T0 = {φ ∈ X : 〈u, φ〉 = 〈1, φ〉 = 0},

which is precisely the tangent space in X to Σ0 at u. Indeed, while 〈1, φ0〉 = 0 by

construction, the inner product 〈u, φ0〉 = {T, M, P}a,E,c does not vanish by hypothesis.

Using the spectral resolution of the operator L[u], we begin the proof of Proposition 8

with the following lemma.

Lemma 11. Assume that the quantities TE, {T,M}a,E, and {T,M,P}a,E,c are positive.

Then

〈L[u]φ, φ〉 > 0.

for every φ ∈ T0 which is orthogonal to the periodic null space of L[u].

Proof. The proof is essentially found in [11]. First, suppose that TE > 0 and note that

by Lemma 9 we can write

φ0 = αχ + βux + p

φ = Aχ + p̃

for some constants α, β, A, and functions p and p̃ belonging to the positive subspace of

L[u]. By assumption the quantity

〈L[u]φ0, φ0〉 = −{T,M}a,E{T, M, P}a,E,c (3.11)

is negative, and hence the above decomposition of φ0 implies that

0 >
〈−λ2αχ + L[u]p, αχ + βux + p

〉
= −λ2α2 + 〈L[u]p, p〉 , (3.12)

which gives an upper bound on the positive number 〈L[u]p, p〉. Similarly, the assumption
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that φ ∈ T0 along with the above decomposition of φ implies

0 = 〈L[u]φ0, φ〉 = −λ2Aα + 〈L[u]p, p̃〉 . (3.13)

Therefore, a simple application of Cauchy-Schwarz implies

〈L[u]φ, φ〉 = −λ2A2 + 〈L[u]p̃, p̃〉

≥ −λ2A2 +
〈L[u]p̃, p〉2
〈Lp, p〉

> −λ2A2 +

(
λ2αA

)2

λ2α2

= 0

as claimed.

Remark 14. In the above proof, the positivity of the quantities {T,M}a,E and {T, M, P}a,E,c

was never used: only the product was required to be positive. However, we show in Corol-

lary 5 that the former is always positive if the latter is negative.

Also, if {T, P}E,c 6= 0, then one can repeat the above proof with the function φ0 re-

placed by φ̃0 = {u, T, P}a,E,c. Then equation (3.11) would be replaced with
〈
L[u]φ̃0, φ̃0

〉
=

{T, P}E,c{T, M, P}a,E,c, which we would have to assume to be negative. It follows that

sign ({T, M}a,E) = −sign ({T, P}E,c) so long as {T, M, P}a,E,c 6= 0. In particular, in the

case of a power-law nonlinearity, Pc < 0 implies {T,M}a,E > 0 if {T,M,P}a,E,c 6= 0.

It is unknown if {T, M,P}a,E,c is negative in this case.

Our strategy in proving Proposition 8 is to find a particular set of translates of a

given φ ∈ Uε for which the inequality holds. To this end, we find that for each φ ∈ Uε

with ε sufficiently small, there exists a set of translates of φ which are orthogonal to

the periodic-null space of L[u]. This is the content of the following lemma.

Lemma 12. There exists an ε > 0 and a unique C1 map α : Uε → R such that for all

φ ∈ Uε, the function φ (·+ α(φ)) is orthogonal to ux.

The proof is presented in [11], and is an easy result of the implicit function theorem.
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Indeed, if we define the functional η : X × R→ R by

η(φ, α) =
∫ T

0
φ(x + α)ux(x)dx,

then ∂
∂αη(φ, α)

∣∣
(φ,α)=(u,0)

=
∫ T
0 u2

xdx > 0 and hence the lemma follows by the implicit

function theorem and the fact that by translation invariance the function α can be

uniquely extended to Uε for ε > 0 sufficiently small.

We now complete the proof of Proposition 8 by proving the following lemma.

Lemma 13. If each of the quantities TE, {T, M}a,E, and {T, M,P}a,E,c are positive,

there exists positive constants C̃ and ε such that

E0(φ)− E0(u) ≥ C̃‖φ(·+ α(φ))− u‖2
X

for all φ ∈ Uε ∩ Σ0.

Proof. Let ε > 0 be small enough such that Lemma 12 holds. Fix φ ∈ Uε∩Σ0 and write

φ(·+ α(φ)) = (1 + γ)u +
(

β − γ 〈u〉
T

)
+ y

where y ∈ T0. Moreover, define v = φ(·+ α(φ))− u and note that by replacing u with

Rξu if necessary we can assume that ‖v‖X < ε. By Taylors theorem, we have

M(a0, E0, c0) = M(φ) = M(a0, E0, c0) + 〈1, v〉+O (‖v‖2
X

)
.

Since 〈1, v〉 = βT , it follows that β = O (‖v‖2
X

)
. Similarly, we have

P (a0, E0, c0) = P (a0, E0, c0) + 〈u, v〉+O (‖v‖2
X

)
.

Moreover, defining 〈g〉 =
∫ T
0 g(x)dx for g ∈ L1

per([0, T ];R), a direct calculation yields

〈u, v〉 = γ

(
‖u‖2

L2([0,T ]) −
〈u〉2
T

)
+ β 〈u〉 .
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Since 〈u〉2 < T‖u‖2
L2([0,T ]) by Jensen’s inequality, it follows that γ = O (‖v‖2

X

)
.

Now, by Taylor’s theorem and the translation invariance of E0, we have

E0(φ) = E0 (φ(·+ α(φ)))

= E0(u) +
〈E ′0(u), v

〉
+

1
2

〈E ′′0 (u)v, v
〉

+ o
(‖v‖2

X

)

= E0(u) +
1
2
〈L[u]v, v〉+ o

(‖v‖2
X

)
.

Hence, by the previous estimates on γ and β, it follows that

E0(φ)− E0(u) =
1
2
〈L[u]v, v〉+ o

(‖v‖2
X

)

=
1
2
〈Ly, y〉+ o

(‖v‖2
X

)
.

Since y ∈ T0 and 〈y, ux〉 = 0 by Lemma 12, it follows from Lemma 11 that

E0(φ)− E0(u) ≥ C1

2
‖y‖2 + o

(‖v‖2
X

)
.

Finally, the estimates

‖y‖X =
∥∥∥∥v − γu− β − γ 〈u〉

T

∥∥∥∥
X

≥
∣∣∣∣‖v‖X −

∥∥∥∥γu− β − γ 〈u〉
T

∥∥∥∥
X

∣∣∣∣

≥ ‖v‖X −O
(
‖v‖2

X

)
.

prove that E0(φ)− E0(u) ≥ C1
4 ‖v‖2

X for ‖v‖X sufficiently small.

Proposition 8 now clearly follows by Lemma 13 and the definition of the semi-

distance ρ. It is now straightforward to complete the proof of Proposition 7.

Proof of Proposition 7: We now deviate from the methods of [11], [32] and [33], and

rather follow the direct method of [27]. Let δ > 0 be such that Proposition 8 holds, and

let ε ∈ (0, δ). Assume φ0 ∈ X satisfies ρ(φ0, u) ≤ ε for some small ε > 0. By replacing

φ0 with Rξφ0 if needed, we may assume that ‖φ0 − u‖X ≤ ε. Since u is a critical point
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of the functional E0, it is clear that we have

E0(φ0)− E0(u) ≤ C1ε
2

for some positive constant C1. Now, notice that if φ0 ∈ Σ0, then the unique solution

φ(·, t) of (3.1) with initial data φ0 satisfies φ(·, t) ∈ Σ0 for all t > 0. Thus, Proposition 8

implies there exists a C2 > 0 such that ρ(φ(·, t), u) ≤ C2ε for all t > 0. Thus φ(·, t) ∈ Uε

for all t > 0, which proves Proposition 7 in this case.

If φ0 /∈ Σ0, then we claim we can vary the constants (a, E, c) slightly in order

to effectively reduce this case to the previous one. Indeed, notice that since we have

assumed {T,M,P}a,E,c 6= 0 at (a0, E0, c0), it follows that the map

(a,E, c) 7→ (T (u( · ; a,E, c)),M(u( · ; a,E, c)), P (u( · ; a,E, c)))

is a diffeomorphism from a neighborhood of (a0, E0, c0) onto a neighborhood of

(T, M(a0, E0, c0), P (a0, E0, c0)). In particular, we can find constants a, E, and c with

|a|+ |E|+ |c| = O(ε) such that the function

ũ = ũ( · ; a0 + a,E0 + E, c0 + c)

solves (3.1), belongs to the space X, and satisfies

M(a0 + a,E0 + E, c0 + a) = M(φ0)

P (a0 + a,E0 + E, c0 + c) = P(φ0).

Defining a new augmented energy functional on X by

Ẽ(φ) = E0(φ) + cP(φ) + aM(φ) + ET,
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it follows as before that

Ẽ(φ(·, t))− Ẽ(ũ) ≥ C3ρ(φ(·, t), ũ)2

for some C3 > 0 as long as ρ(φ(·, t), ũ) is sufficiently small. Since ũ is a critical point of

the functional Ẽ we have

C3ρ(φ(·, t), ũ)2 ≤ Ẽ(φ0)− Ẽ(ũ) ≤ C4‖φ0 − ũ‖2
X

for some C4 > 0. Moreover, it follows by the triangle inequality that

‖φ0 − ũ‖X ≤ ‖φ0 − u‖X + ‖u− ũ‖X ≤ C5ε

for some C5 > 0 and hence there is a C6 > 0 such that

ρ(φ(·, t), u) ≤ ρ(φ(·, t), ũ) + ‖ũ− u‖X ≤ C6ε

for all t > 0. The proof of Proposition 7, and hence Theorem 11, is now complete.

We would like to point out an interesting artifact of the above proof. Notice that

the step at which the sign of the quantities {T,M,P}a,E,c and {T, M}a,E came into

play was in the proof of Lemma 11, from which we have the following corollary.

Corollary 5. On the set Ω, the quantity {T, M}a,E is positive whenever {T,M, P}a,E,c

is negative and TE is positive.

Proof. This is an easy consequence of Theorem 12 and equation (3.11). Indeed, if

{T, M}a,E and {T,M,P}a,E,c were both negative for some (a0, E0, c0) ∈ Ω, then by the

proof of Lemma 11 we could conclude that 〈L[u( · ; a0, E0, c0)]φ, φ〉 > 0 for all φ ∈ T0

which are orthogonal to ux. Since this is the only time in which the signs of these

quantities arise, it follows that Proposition 7 would hold thus contradicting Theorem

12.
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It follows that we have a geometric theory of the orbital stability of periodic trav-

eling wave solutions of (3.1) to perturbations of the same period as the underlying

periodic wave. In the next two sections, we consider specific examples and limiting

cases where the signs of these quantities can be calculated. First, we consider periodic

traveling wave solutions sufficiently close to an equilibrium solution (a local minimum

of the effective potential) or to the bounding homoclinic orbit (the separatrix solution).

By considering power-law nonlinearities in each of these cases, we give necessary and

sufficient8 conditions for the orbital stability of such solutions. Secondly, we consider

the KdV and prove that all periodic traveling wave solutions are orbitally stable to

perturbations of the same periodic as the underlying periodic wave.

3.4 Analysis Near Homoclinic and Equilibrium Solutions

In this section, we use the theory from section 3.3 in order to prove general results

about the stability of periodic traveling wave solutions of (3.1) in two distinguished

limits: as one approaches the solitary wave, i.e. (a,E, c) ∈ Ω and consider the limit

T (a,E, c) →∞ for fixed a, c, as well as in a neighborhood of the equilibrium solution, i.e.

near a non-degenerate local minimum of the effective potential V (u; a, c). Throughout

this section, we will consider only power-law nonlinearities.

We begin with considering stability near the solitary wave. Our main result in this

limit is that the quantities TE and {T,M}a,E are positive for (a0, E0, c0) ∈ Ω with

sufficiently large period. Hence, the orbital stability of such a solution in this limit

is determined completely by the periodic spectral stability index {T, M, P}a,E,c, which

in turn is controlled by the sign of the solitary wave stability index (3.3). This is the

content of the following theorem.

Theorem 13. In the case of a power-law nonlinearity, i.e. f(u) = up+1 with p ≥ 1, a

periodic traveling wave solution of (3.1) of sufficiently large period and (a,E, c) ∈ Ω is

orbitally stable if p < 4 and exponentially unstable to perturbations of the same period

as the underlying wave if p > 4.
8Except in the exceptional case of being near the homoclinic orbit for p = 4.
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Proof. By the work in chapter 2, the quantity Ma is negative for such (a,E, c) ∈ Ω.

Moreover, since we are working with a power-law nonlinearity, the periodic traveling

wave solutions satisfy the scaling relation

u(x; a,E, c) = c1/pu

(
c1/2x;

a

c1+1/p
,

E

c1+2/p
, 1

)

from which we get the asymptotic relation

{T, M, P}a,E,c ∼ −TEMa

(
2
pc
− 1

2c

)
P

as Ω 3 (a,E, c) → (0, 0, c) for a fixed wave speed. Since {T,M}a,E = M2
E − TEMa, it

follows from Lemma 10 and Theorem 12 that the solutions u(x; a, E, c) with (a,E, c) ∈ Ω

of sufficiently large period are orbitally stable if p < 4 and exponentially unstable to

periodic perturbations if p > 4.

Next, we consider periodic traveling wave solutions near the equilibrium solution.

We will use the methods of this paper to prove that such solutions are orbitally stable

to periodic perturbations, provided that a is sufficiently small. To begin, we fix a

wave speed c > 0 and consider (3.1) with a power-law nonlinearity f(u) = up+1 with

p ≥ 1. Recall that TE > 0 by Lemma 10, and hence it suffices to prove that {T, M}a,E

and {T, M,P}a,E,c are both positive near the equilibrium solution. By continuity, it

is enough to evaluate both these indices at the equilibrium and to show they are both

positive there. This is the content of the following lemma.

Lemma 14. Consider (3.1) with a power-law nonlinearity f(u) = up+1 for p ≥ 1. Then

the quantity Ma is negative for all (a0, E0, c0) ∈ Ω such that |a| is sufficiently small

and the corresponding solution u( · ; a0, E0, c0) is sufficiently close to the equilibrium

solution9.

Proof. First, denote the equilibrium solution as ua,c and let E∗(a, c) = V (ua,c; a, c). It

9In the case of the KdV (p = 1), Ma is negative in a deleted neighborhood of the equilibrium solution.
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follows that

lim
E↘E∗

T (a,E, c) =
2π√
cp

and that the equilibrium solution admits the expansion

ua,c = c1/p

(
1 +

a

p

)
+O(a2).

Now, solutions near the equilibrium ua,c can each be written as u(x; a, E, c) = Pa,E,c(ka,E,cx),

where ka,E,cT (a,E, c) = 2π and Pa,E,c is a 2π periodic solution of the ordinary differ-

ential equation

k2
a,E,cv

′′ + vp+1 − c1+1/pa = 0

such that

Pa,E∗,c = ua,c, k2
a,E∗,c = (p + 1)up

a,c − c.

Straightforward computations give the expansions

Pa,E,c(z) = ua,c +O(
√

E − E∗ (
1 + a2

)
),

k2
a,E,c = cp + (p + 1)ca +O((E − E∗) + a2).

Thus, the mass M(a,E, c) can be expanded as

M(a,E, c) =
∫ 2π/ka,E,c

0
Pa,E,c(ka,E,cz)dz

=
1

ka,E,c

∫ 2π

0
P̃a,E,c(z)dz

=
2π√
cp

(
1 +

(1− p)a
2p

)
+O(

√
E − E∗ + a2)

It follows that
∂

∂a
M(a,E, c)

∣∣
(0,E∗,c) =

π(1− p)
p
√

cp

which is negative for p > 1.

The case p = 1, which corresponds to the KdV equation, will be discussed in the

next section. There we will show that although Ma vanishes at the equilibrium solution,
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it is indeed negative for nearby periodic traveling waves with the same wave speed c,

i.e.
∂2

∂E∂a
M(a,E, c)

∣∣
(0,E∗,c) < 0.

Next, we must determine the sign of the periodic spectral stability index {T,M,P}a,E,c.

Although it follows from Theorem 4.4 in [35] that this index must be positive 10, we

present an independent proof based on the periodic Evans function methods of chapter

2. To this end, we recall out that the Hamiltonian structure of the linearized operator

∂xL[u] we have the identity

{T, M, P}a,E,c = −2
3

tr (Mµµµ(0)) ,

where M(µ) is the corresponding monodromy operator (see Theorem 8 of chapter 2 for

details). Thus, it is sufficient to show that tr(Mµµµ(0)) is negative near the equilibrium

solution. This is the content of the next lemma.

Lemma 15. Consider (3.1), and suppose u0 is a non-degenerate local minima of the

corresponding effective potential V (u; a, c). Then tr (Mµµµ(0)) < 0 at u0.

Proof. The key point is that if we write the spectral problem ∂xL[u]v = µv as a first

order system of the form Φx = H(x, µ)Φ by the usual procedure, then the matrix

H(x, µ) reduces to the constant matrix

H(µ) =




0 1 0

0 0 1

−µ −V ′′(u0; a, c) 0




at the equilibrium solution u0. Thus, the corresponding monodromy operator at u0 can

be expressed as M(µ) = exp (H(µ)T0), where T0 = 2π√
p . Thus, in order to calculate the

10They prove the spectrum of the linearized operator ∂xL[u] intersects the real axis only at µ = 0 for
such small amplitude solutions.
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function tr(M(µ)), it is sufficient to calculate the eigenvalues of the constant matrix

H(µ).

Now, the periodic Evans function corresponding to the constant coefficient system

induced by H(µ) can be written as

D0(µ, λ) = det (H(µ)− λI) = −λ3 − V ′′(u0; a, c)λ− µ.

In particular, notice that ∂
∂λD0(µ, λ) = −λ2 − V ′′(u0; a, c). Since V ′′(u0; a, c) > 0 it

follows that the function D0(µ, · ) will have precisely one real root for each µ ∈ R. This

distinguished root is given by the formula

γ1(µ) =

(
2
3

)1/3
V ′′(u0)(

9µ +
√

3
√

27µ2 + 4V ′′(u0)3
)1/3

︸ ︷︷ ︸
=:α(µ)

+


−

(
9µ +

√
3
√

27µ2 + 4V ′′(u0)3
)1/3

21/332/3




︸ ︷︷ ︸
=:β(µ)

.

Defining ω = exp(2πi/3) to be the principle third root of unity, the two complex eigen-

values of H(µ) can be written as γ2(µ) = ωα(µ) + ωβ(µ) and γ3(µ) = ωα(µ) + ωβ(µ),

and hence

tr (M(µ)) = exp (γ1(µ)T0) + exp (γ2(µ)T0) + exp (γ3(µ)T0) .

Now, a straightforward, yet tedious, calculation using the facts that 1 + ω + ω = 0 and

ω2 = ω implies that

tr (Mµµµ(0)) = 9T 2
0

(
α′′(0)β′(0) + α′(0)β′′(0)

)
+ 3T 3

0

(
α′(0)3 + β′(0)3

)
.

Moreover, from the definitions of α and β we have

α′(0) = − 1
2V ′′(u0)

= β′(0), and α′′(0) =
√

3
4V ′′(u0)5/2

= −β′′(0).
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Therefore, we have the equality

tr ((Mµµµ(0)) = − 6π3

V ′′(u0)9/2
,

which is clearly negative.

Remark 15. Notice that by similar methods, one could obtain a similar expression for

tr(Mµµ(0)) and show the modulational instability index from [16] always vanishes at

the equilibrium solutions of the traveling wave ordinary differential equation 3.6.

Therefore, it follows that in the case of a power-nonlinearity and solutions sufficiently

close to a non-degenerate minima of the effective potential, each of the quantities TE ,

{T, M}a,E , and {T, M, P}a,E,c are all positive. Therefore, Theorem 11 immediately

yields the following result.

Theorem 14. Consider equation (3.1) with a power-law nonlinearity f(u) = up+1 for

p ≥ 1. Then the periodic traveling wave solutions u(x; a,E, c) with (a,E, c) ∈ Ω and

a2 + (E − E∗)2 sufficiently small are orbitally stable in the sense of Theorem 11.

3.5 The Korteweg-de Vries Equation

In this section, we will apply the general theory from section 3.3 in order to prove that

periodic traveling wave solutions of (3.1) with f(u) = u2 and c > 0 are orbitally stable

with respect to periodic perturbations if and only if they are spectrally stable to such

perturbations. To this end, we notice that solutions of the KdV equation

ut = uxxx + (u2)x − cux (3.14)

are invariant under the scaling transformation

u(x, t) 7→ c u(
√

cx, c3/2t),
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and hence, by (2.7), the stationary periodic traveling wave solutions satisfy the identity

u(x; a,E, c) = c u

(
c1/2x;

a

c
,
E

c3
, 1

)
.

Thus, by scaling we may always assume that c = 1 in (3.14). Moreover, we may always

assume that a = 0 due to the Galilean invariance of the KdV. Therefore, it is sufficient

to determine the stability of periodic traveling wave solutions of (3.14) of the form

u(x; 0, E, 1). In order to do so, we need the following easily proved lemma.

Lemma 16. Let µ be a (Borel) probability measure on some interval I ⊂ R, and let

f, g : I → R be bounded and measurable functions. Then

∫

I
f(x)g(x)dµ−

(∫

I
f(x)dµ

)(∫

I
g(x)dµ

)
=

1
2

∫

I×I
(f(x)− f(y)) (g(x)− g(y)) dµxdµy.

(3.15)

In particular, if both f and g are strictly increasing or strictly decreasing, and if the

support of µ is not reduced to a single point, then

∫

I
f(x)g(x)dµ >

(∫

I
f(x)dµ

)(∫

I
g(x)dµ

)
.

The proof of this lemma is a trivial result of Fubini’s theorem, as one can see by

writing the left hand side of (3.15) as an iterated integral and simplifying the resulting

expression. Now, recall from Lemma 10 that TE > 0 for periodic traveling wave solutions

of (3.14). To conclude orbital stability, we must identify the signs of the Jacobians

{T, M}a,E and {T,M,P}a,E,c. The main technical result we need for this section is the

following lemma, which uses Lemma 16 to guarantee the sign of the quantity in (3.11)

is completely determined by the Jacobian {T, M, P}a,E,c.

Lemma 17. If f(u) = u2 in (3.1), then {T,M}a,E > 0 for all (a0, E0, c0) ∈ Ω which

do not correspond to the unique equilibrium solution.

Proof. First, notice that since Da,E,cK(a,E, c) = (M, T, P ), it follows that {T, M}a,E =

M2
E − TEMa, and hence by Lemma 10 it is enough to prove that Ma < 0. Moreover,
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by our above remarks it is enough to consider the case c = 1 and a = 0. It follows for

f given as above, we can find functions u1, u2, u3 which depend smoothly on (a,E, c)

within the domain Ω such that

3 (E − V (u; 0, 1)) = (u− u1)(u− u2)(u3 − u).

Notice that the assumption that we are not at the equilibrium solution implies that the

roots ui are distinct, and moreover that V ′(ui; 0, 1) 6= 0. Since E − V (ui; 0, 1) = 0 on

Ω, it follows that
∂ui

∂a
=

ui

V ′(ui; 0, 1)
.

Since u1 < 0 and u2, u3 > 0, we have

∂u1

∂a
< 0,

∂u2

∂a
< 0, and

∂u3

∂a
> 0. (3.16)

Moreover, since u1 + u2 + u3 = 3c
2 we have the relation

∂u2

∂a
+

∂u3

∂a
= −∂u1

∂a
> 0 (3.17)

on Ω.

Now, by making the change of variables u 7→ s(θ) = u2 cos2(θ) + u2 sin2(θ), we have

du = 2
√

(u− u2)(u3 − u)dθ and hence we may express the mass of u(x; a,E, c) as

M(a,E, c) =
√

2
∫ u3

u2

u du√
E − V (u; a, c)

= 2
√

6
∫ π/2

0

s(θ) dθ√
s(θ)− u1

. (3.18)

Notice we suppress the dependence of s(θ) on the parameters (a,E, c). Defining σ(θ) =
√

s(θ)− u1, a straightforward computation using (3.17) shows that the derivative of
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the integrand in (3.18) with respect to the parameter a can be expressed as

∂

∂a

(
s(θ)√

s(θ)− u1

)
=

∂u2

∂a

(
cos2(θ)
2σ(θ)

)
+

∂u3

∂a

(
sin2(θ)
2σ(θ)

)

−
(

∂u2

∂a
+

∂u3

∂a

)(
s(θ)

2σ(θ)3

)
− u1

2σ(θ)3

(
∂u2

∂a
cos2(θ) +

∂u3

∂a
sin2(θ)

)

=
∂u2

∂a

(
cos2(θ)− sin2(θ)

2σ(θ)

)
+

(
∂u2

∂a
+

∂u3

∂a

)(
sin2(θ)
2σ(θ)3

)

−
(

∂u2

∂a
+

∂u3

∂a

)
s(θ)

2σ(θ)3
− u1

∂u2

∂a

(
cos2(θ)− sin2(θ)

2σ(θ)3

)

− u1

(
∂u2

∂a
+

∂u3

∂a

)(
sin2(θ)
2σ(θ)3

)
.

With a little more algebra, this may be rewritten as

∂

∂a

(
s(θ)√

s(θ)− u1

)
=

∂u2

∂a

(
cos2(θ)− sin2(θ)

2σ(θ)

)
− u1

∂u2

∂a

(
cos2(θ)− sin2(θ)

2σ(θ)3

)

−
(

∂u2

∂a
+

∂u3

∂a

) (
s(θ) cos2(θ)− u1

(
cos2(θ)− sin2(θ)

)

2σ(θ)3

)
.

Since the functions cos2(θ)− sin2(θ) and σ(θ)−1 are strictly decreasing on the interval

(0, π/2), it follows from Lemma 16 that

∫ π/2

0

cos2(θ)− sin2(θ)
σm(θ)

dθ > 0

for any m > 0. Evaluating the above expression at (a,E, c) = (0, E, 1) ∈ Ω implies that

s(θ) > 0 for all θ ∈ (0, π/2), and hence (3.16) and (3.17) imply that

∫ π/2

0

∂

∂a

(
s(θ)√

s(θ)− u1

)
dθ < 0

at (0, E, 1), from which the lemma follows.

Therefore, our main theorem on the stability of periodic traveling wave solutions of

the Korteweg-de Vries equation follows by Theorem 11, Theorem 12, and Lemma 17.

Theorem 15. Let (a0, E0, c0) ∈ Ω and assume that {T, M, P}a,E,c 6= 0 at (a0, E0, c0).

Then the corresponding periodic solution of (3.6) is an orbitally stable solution of (3.1)
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if and only if the solution is spectrally stable to perturbations of the same period, i.e. if

and only if {T, M,P}a,E,c > 0 at (a0, E0, c0).

An interesting corollary of Theorem 15 applies to cnoidal wave solutions of the KdV.

It was suggested by Benjamin [8] that such solutions should be stable to perturbations

of the same period. This conjecture has indeed been proved both by using the complete

integrability of the KdV [50] [12] and by variational methods as in the present paper

[2]. In particular, in [12] it was shown that the cnoidal solutions of the KdV are

spectrally stable to localized perturbations, and are linearly stable to perturbations with

the same period as the underlying wave. Clearly then such solutions are spectrally stable

with respect to periodic perturbations. Paired with Theorem 15, this provides another

verification Benjamin’s conjecture in the case where the cnoidal wave has positive wave

speed.

Corollary 6. The cnoidal wave solutions of (3.1) with f(u) = u2 of the form

u(x, t) = u0 + 12k2κ2 cn2
(
κ

(
x− x0 −

(
8k2κ2 − 4κ2 + u0

)
t
))

,

with k ∈ [0, 1) and κ, x0, and u0 real constants, are orbitally stable in the sense of

Theorem 11 if the wave speed 8k2κ2 − 4κ2 + u0 is positive.

3.6 Concluding Remarks

In this chapter, we extended the periodic spectral stability results of chapter 2 in order

to determine sufficient conditions for the orbital stability of the four-parameter family

of periodic traveling wave solutions of the generalized Korteweg-de Vries equation (3.1).

By extending the methods of [11] to the periodic case, a new geometric condition was

derived in terms of the conserved quantities of the gKdV flow restricted to the manifold

of periodic traveling wave solution, and it was shown how this could be translated to

a condition on the Hessian of the classical action of the ordinary differential equation

governing the periodic traveling waves. As a byproduct of this theory, it was shown

that such solutions of the KdV are orbitally stable to perturbations of the same period
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as the underlying wave if and only if they are spectrally stable to periodic perturbations

of the same period.

There are several points in which this theory is still lacking. First off, it is not

clear what happens in the case TE < 0. In the solitary wave theory, the existence

of two negative eigenvalues of the second variation L[u] indicates instability. Also,

if TE > 0 and {T, M}a,E < 0 it is not clear whether this implies orbital instability,

although we conjecture this is indeed the case. We would like to show in the case

{T, M}a,E{T, M, P}a,E,c < 0 and TE > 0 that there exists a 1-parameter family of

functions in Σ0 which contain the solution u(x; a0, E0, c0) such that the augmented

energy functional E0 has a strict local maximum at (a0, E0, c0). However, it is not clear

how to do this in a reasonable manner: mainly, one must fix the period, mass, and

momentum along this curve, and the derivative of this curve at (a0, E0, c0) must also be

in X. The existence of such an instability would stand in stark contrast to the solitary

wave case, where the orbital stability is equivalent to the spectral instability (except

possibly on the transition curve). However, it seems quite possible that such a situation

arises due to the fact that the solitary waves are a co-dimension two subset of the family

of traveling wave solutions.
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CHAPTER 4

Transverse Instability Analysis of the gKdV

In this chapter, we consider the stability of periodic traveling wave solutions of the

generalized KdV equation within higher dimensional models of shallow water waves. In

particular, we study the stability of such solutions to long-wavelength perturbations in

a transverse direction. We derive sufficient conditions for this instability in terms of the

conserved quantities of the gKdV flow, much in the same way the modulational and

finite wavelength indices were derived in previous chapters.

This notion of stability has been studied in some detail in the solitary wave setting.

In particular, the first example of transverse instability of solitary waves is the instability

of solitary wave solutions of the KdV within the Kadomtsev-Petviashvili (KP) equation

(ut − uxxx − uux)x + uyy = 0

It is clear that a y-independent solution of the KdV equation ut = uux +uxxx solves the

KP equation. Thus, a natural question is to ascertain the stability of such solitary wave

solutions within the KP equation. As a first step to understanding this stability is to

study the spectrum of the linearization of the KP equation about a KdV solitary wave.

This question was first considered by Kadomtsev and Petviashvili in [39]. Here, the

authors developed a perturbation theory for such calculations and successfully showed

that the solitary wave solutions of the KdV are transversely unstable to perturbations

of long-wavelength in the KP model.

In the periodic context, however, we find that our methods are insufficient to analyze

such transverse instabilities within the KP model. Indeed, one can easily check that

while the KP equation admits a four parameter family of y-independent traveling wave
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solutions, the corresponding periodic traveling waves constitute only a three parameter

sub-family. Thus, the corresponding ODE governing the y-independent traveling wave

solutions of the KP equation is not completely integrable, i.e. not reducible to quadra-

ture, and hence we are unable to find a useful basis to calculate the tangent space of the

manifold of periodic traveling wave solutions at the origin. This deficiency shows the

weakness in the methods used in this thesis. Notice that in the solitary wave theory,

this issue is avoided completely since upon the first integration the resulting constant

must be zero by the boundary conditions at infinity: as we have seen throughout this

thesis, there is no reason to force this constant to be zero in the periodic case.

The goal of this chapter is to consider the analogous question of transverse stability

of periodic traveling wave solutions of the gKdV

ut = uxxx + (f(u))x (4.1)

to perturbations of long-wavelength within the Zakharov-Kuznetov (ZK) equation in

two space dimensions:

ut = uxxx + (f(u))x + uyyx. (4.2)

Clearly, if u(x; a,E, c) is a y-independent periodic traveling wave solutions of (4.1),

then u solves (4.2). We will use periodic Evans function techniques in order to derive

sufficient conditions for a spectrally periodic traveling wave solutions of (4.1) to be

spectrally stable to long-wavelength transverse perturbations in the ZK model. As an

application of this theory, we will show that periodic traveling wave solutions of the KdV

equation with (a,E, c) ∈ Ω are transversely unstable to long-wavelength perturbations

in the ZK-model if the gKdV linearization has no non-zero real periodic eigenvalues.
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4.1 Preliminaries

Throughout this chapter, we assume (a0, E0, c0) ∈ Ω is such that u(x; a0, E0, c0) is a

spectrally stable periodic traveling wave solution of the equation

ut = uxxx + (f(u))x − cux. (4.3)

In particular, we assume that the linearized operator ∂xL[u] has no non-zero real pe-

riodic eigenvalues. By Corollary 3 of chapter 2, it follows that {T, M, P}a,E,c must be

positive at (a0, E0, c0). We wish to examine the spectral stability of u to long-wavelength

perturbations in the framework of the traveling wave ZK equation

ut = uxxx + (f(u))x − cux + uyyx. (4.4)

Notice that since u is a solution to (4.3), it is clearly a solution to (4.4) and hence it

makes sense to discuss its spectral stability (in this section, spectral stability will refer

to spectral stability in the ZK model).

Linearizing (4.4) around u yields

−vt = ∂x

(L[u]− ∂2
y

)
v

where L[u] = −∂2
x − f ′(u) + c is as in chapter 2. In particular, L[u] is a self adjoint

second order differential operator on L2(R). Since this linearization is autonomous in

time, we seek separated solutions of the form

v(x, y, t) = v(x)e−µt−iky

where µ ∈ C, and k ∈ R is the transverse wave number of perturbation. This leads one

to the (ordinary differential equation) spectral problem

∂x

(L[u] + k2
)
v = µv
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considered on the real Hilbert space L2(R). Our goal is to study the spectrum of the

operator ∂x

(L[u] + k2
)

on L2(R) near the origin (µ, k) = (0, 0). As in chapter 2, the

spectrum is purely continuous and consists of piecewise smooth arcs. In particular, for

a given k ∈ R, µ ∈ spec
(
∂x

(L[u] + k2
))

if and only if there exists a λ ∈ S1 such that

D(µ, k, λ) = det (M(µ, k)− λI) = 0

where M(µ, k) is the monodromy map corresponding to the first order system

Yx = H(x, µ, k)Y, Y (0, µ, k) = I, (4.5)

where

H(x, µ, k) =




0 1 0

0 0 1

−µ− f ′′(u)ux c + k2 − f ′(u) 0




.

In chapter 2 we extensively studied the case when k = 0, which corresponds to the

generalized Korteweg-de Vries equation.. We found that µ = 0 is a periodic eigenvalue

of multiplicity three. Instead of developing a perturbation theory in the Floquet param-

eter, from which we deduced the modulational instability index in chapter 2, we fix the

Floquet parameter and develop a perturbation theory in the transverse wave number k.

That is, we determine how the periodic eigenvalues of the linear operator ∂x

(L[u] + k2
)

bifurcate from the k = 0 state. Notice, in particular, that if u is spectrally unstable

to periodic perturbations of the gKdV, then it is automatically unstable to transverse

perturbations in the ZK-model. This justifies our assumption that {T, M,P}a,E,c is

positive at (a0, E0, c0).

4.2 Transverse Instability Results

From chapter 2, we know that D(µ, 0, 1) = O(|µ|3), i.e. µ = 0 is a periodic eigenvalue

of the operator ∂xL[u] of multiplicity three. We expect these periodic eigenvalues to
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bifurcate from the origin as we consider |k| ¿ 1. Thus, we are interested in determining

the dominant balance of the equation D(µ, k, 1) = 0 in a neighborhood of (µ, k) = (0, 0).

From this, a sufficient condition for the transverse instability of periodic traveling wave

solutions of the gKdV in the ZK-model will arise naturally.

We begin by studying the leading order asymptotics of the periodic Evans function

D(µ, k, 1) in a neighborhood of the origin. This is the goal of the next lemma.

Lemma 18. The equation D(µ, k, 1) = 0 has the following local normal form in a

neighborhood of the origin (µ, k) = (0, 0):

−µ3

2
{T,M,P}a,E,c + 2µk2{T, M}a,E

∫ T

0
u2

xdx +O(4) = 0,

where O(4) denotes terms of order four and higher in the variables µ and k.

Proof. Recall from Theorem 8 that

D(µ, 0, 1) = −µ3

2
{T, M, P}a,E,c +O(|µ|4)

in a neighborhood of µ = 0. Thus, we need only compute the O(µk2) term in the above

expansion. To this end, notice that we can write H(x, µ, k) = H(x, µ) + H0(k), where

H(µ, k) is given as in (2.16) in Chapter 2 and

H0(k) =




0 0 0

0 0 0

0 k2 0




.

Our goal then follow the proof of Theorem 8 and use variation of parameters in order

to determine the O(µk2) term in the equation D(µ, k, 1).

To begin, let W(x, µ, k) be a matrix solution of (4.5) such that

W(x, 0, 0) =




cux cua cuE

cuxx cuax cuEx

cuxxx cuaxx cuExx
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and W(0, µ, k) = W(0, 0, 0) for all µ ∈ C and k ∈ R. The goal is to treat W(x, µ, k) as

a small perturbation of W(x, 0, 0) for |(µ, k)|C×R ¿ 1. Following the proof of Theorem

8 we define δ W(µ, k) = W(x, µ, k)|Tx=0 and notice that δ W(µ, k) = δ W(µ) + k2 W0,

where δ W(µ) is from the proof of Theorem 8 and W0 is a matrix which is independent

of µ and O(1) in the transverse wave number k. Since we clearly have

M(µ, k) = (δ W(µ, k) + I) W(0, 0, 0)−1,

we need only compute the k2 variation of the first column of W(x, 0, k). Using the

variation of parameters formula given in (2.35) from chapter 2 yields

W(T, 0, 0)
∫ T

0
W(z, 0, 0)−1




0

0

uxx(z)




dz =




c∂u−
∂E

∫ T
0 u2

xdx

∗
(c− 1− f ′(u−)) ∂u−

∂E

∫ T
0 u2

xdx




,

where the term ∗ is can be explicitly computed, but is not necessary at this order in

the perturbation argument. Therefore, a straightforward calculation gives

1
µk2

det (δ W(µ, k))
∣∣
(µ,k)=(0,0)

= −{T, M}a,E

∫ T

0
u2

xdx.

Since det (W(x, 0, 0)) = −1, this completes the proof.

Lemma 18 readily yields a necessary condition for the underlying periodic traveling

wave solution of (4.3) to exhibit a modulational transverse instability in the ZK model.

Theorem 16. If {T,M, P}a,E,c 6= 0, then the spectrally stable periodic gKdV travel-

ing wave u(x; a0, E0, c0) with (a0, E0, c0) ∈ Ω is spectrally unstable to long-wavelength

transverse perturbations in the ZK model if {T, M}a,E > 0 at (a0, E0, c0).

Proof. By Lemma 18, there are three periodic eigenvalues in a neighborhood of the

origin which are given by µ0 = o(k) and

µ± = ±|k|
√

4{T, M}a,E

∫ T
0 u2

xdx

{T, M, P}a,E,c
+ o(k)
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Since u(x; a,E, c) was assumed to be a spectrally stable solution of (4.1), we know from

Corollary 3 that {T, M,P}a,E,c > 0 and hence there will be two (non-zero) periodic

eigenvalues off the imaginary axis in the neighborhood of the origin if {T, M}a,E > 0.

We now point out a few interesting corollaries to Theorem 16. First off, the asymp-

totic analysis in a long-wavelength limit conducted in Chapter 2 implies that the sign of

{T, M}a,E = M2
E−TEMa is positive for (a,E, c) ∈ Ω corresponding to periodic solutions

of sufficiently long wavelength. Thus, by our analysis in Chapter 2, we immediately get

the following corollary.

Corollary 7. In the case of a power-law nonlinearity, the periodic traveling wave solu-

tions u( · ; a0, E0, c0) of (4.1) with (a0, E0, c0) ∈ Ω such that the period T (a0, E0, c0) is

sufficiently large are spectrally unstable transverse perturbations in the ZK-model.

Proof. Clearly, such a solution is unstable to long-wavelength transverse perturba-

tions in the ZK model if {T, M, P}a,E,c > 0, i.e. if p < 4. Moreover, if p > 4 then

{T, M, P}a,E,c < 0 and hence the function D(µ, 0, 1) has a non-zero real root µ∗ > 0,

and hence by continuity the function D(µ, k, 1) will have a root near µ∗ with positive real

part for |k| ¿ 1. Thus, although we are not guaranteed a long-wavelength transverse

instability in this case, we still have spectral instability none the less.

Next we note that by Lemma 17 in Chapter 3, we know in the case of the KdV

equation {T, M}a,E > 0 for all (a0, E0, c0) ∈ Ω. Thus, we get the following corollary.

Corollary 8. Periodic traveling wave solutions of the KdV with (a0, E0, c0) ∈ Ω are

spectrally unstable to transverse perturbations in the ZK-model if {T,M,P}a,E,c 6= 0 at

(a0, E0, c0) ∈ Ω.

Proof. The proof is essentially the same as Corollary 7. Simply notice that if the periodic

stability index {T,M,P}a,E,c is positive at (a0, E0, c0), then the solution is spectrally

unstable to long-wavelength transverse perturbations in the ZK model. Moreover, if

{T, M, P}a,E,c < 0, we know the function D(µ, k, 1) will have a root with positive real

part for |k| ¿ 1, which completes the proof.
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CHAPTER 5

The Generalized Benjamin-Bona-Mahony and

Camassa-Holm Equations

In this chapter, we show how the spectral stability techniques of chapter 2 and 4 can

be extended to other third order non-linear dispersive equations. In particular, we

consider the spectral stability of periodic traveling wave solutions of the generalized

Benjamin-Bona-Mahony (gBBM) equation as well as the generalized Camassa-Holm

(gCH) equation.

This analysis is very similar to that of chapter 2 and 4, and most of the analysis in

this chapter is presented in the context of the gBBM equation. Our first observation

is that the asymptotic behavior of the periodic Evans function in a neighborhood of

the origin in the spectral plane yields two separate instability indices. One provides a

necessary and sufficient condition for the existence of a modulational instability, assum-

ing a non-degeneracy condition is met, while the other counts modulo 2 the number

of positive periodic eigenvalues of the corresponding linearized operator. This second

index is a generalization of the one which governs stability of the solitary wave: this

is shown explicitly by studying long-wavelength asymptotics and recovering the well

known results of Pego and Weinstein. As expected from our work in chapter 2, each of

the above indices are expressible in terms of Jacobians of maps from a parameter space

parameterizing the periodic traveling waves to the conserved quantities of the gBBM,

and hence is geometric in nature. Moreover, the vanishing of the second index is shown

to be equivalent to a change in the structure of the generalized periodic null-space of

the linearized operator. Finally, we study the stability of such periodic traveling wave

solutions of the gBBM to long-wavelength transverse perturbations, as well as show

how the methods in this paper can be applied to periodic traveling wave solutions of

the generalized Camassa-Holm equation.
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5.1 Introduction and Preliminaries

In this chapter, we consider periodic standing wave solutions of the generalized Benjamin-

Bona-Mahony (gBBM) equation

ut − uxxt + ux + (f(u))x = 0, (5.1)

and the generalized Camassa-Holm equation

ut − uxxt = 2uxuxx + uuxxx − (f(u)/2)x − kux, (5.2)

where f(·) ∈ C2(R) is a prescribed nonlinearity satisfying suitable convexity assump-

tions. As in the case of the gKdV, these equations admit a four-parameter family of

traveling wave solutions of the form u(x, t) = u(x − ct) where the wave speed c > 1.

However, unlike the analysis of chapter 2 and 4, the linearization about such a solution

yields a non-local linear partial differential equation. The goal of this chapter is to

study the spectrum of the associated non-local operators in appropriate Hilbert spaces

in order to ascertain information about the stability of the periodic traveling wave so-

lutions of (5.1) and (5.2) with respect to localized or uniformly bounded continuous

perturbations.

Of particular interest is the case of a power nonlinearity f(u) = up+1/(p + 1).

In the case p = 1, equation (5.1) is known as the Benjamin-Bona-Mahony (BBM)

equation, or the regularized long-wave equation and (5.2) is known as the Camassa-Holm

equation. Each of these equations are completely integrable, and have been derived as

an alternative model to the Korteweg-de Vries equation as a description of gravity

water waves in the long-wave regime. The BBM, as well as the gBBM, equation has

received much attention over the years into the stability of solitary (L2) type solutions.

In particular, it is well known that solitary wave solutions of (5.1) are orbitally stable

for all wave speeds c > 1 if 1 ≤ p ≤ 4. Moreover, if p > 4, then there exists a critical

wave speed c = c0(p) such that solitary traveling waves with c > c0(p) are orbitally

stable, while those with 1 < c < c0(p) are exponentially unstable due to the presence of
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a non-zero real eigenvalue of the linearized operator. There are relatively few spectral

stability results for equation (5.1) in the periodic case when considering arbitrary L2

perturbations of the underlying wave. In the well known work of Gardner [31], it is

shown that periodic traveling wave solutions of (5.1) of sufficiently long wavelength

are exponentially unstable whenever the limiting homoclinic orbit (solitary wave) is

unstable. The mechanism behind this instability is the existence of a “loop” of spectrum

in the neighborhood of any unstable eigenvalue of the limiting solitary wave.

The gCH equation, however, has only recently been derived and thus the stability

theory is not as well developed. In contrast to the gKdV and gBBM equations, the

derivative of continuous solutions to the gCH may experience point singularities, in

which case the solution is called a Peakon or Cuspon (a pun on the term Soliton).

In particular, a complete characterization of the traveling wave solutions of (5.2) has

recently been derived in [46]: more will be said on this at the end of this chapter.

Stability theory for the exponentially decaying solutions of (2.1) have been carried

out by [48] in the case of peakon solutions. In the periodic context, Hǎrǎguş recently

carried out a detailed spectral stability analysis in the case of power-nonlinearity f(u) =

up+1/(p + 1) for waves sufficiently close to the constant state u = ((p + 1)(c− 1))1/p.

The gCH equation is quite different from the previously mentioned gKdV and gBBM

equations. In particular, it admits smooth traveling wave solutions (both periodic and

solitary) which blow up in finite time. This may be expected, since the gCH equation

was originally derived to describe wave-breaking phenomenon. Our results relating to

this equation are not as explicit, but we are able to ascertain information about the

stability spectrum in a neighborhood of the origin.

The outline for this chapter is as follows. Sections 5.2 through 5.5 concern only

periodic traveling wave solutions of the gBBM equation. In section 5.2, we review some

basic properties of the periodic traveling wave solutions and discuss the associated

conserved quantities. In section 5.3, we study the nature of the periodic Evans function

in a neighborhood of the origin, as well as for large real spectral values. We are able to

determine a modulational instability index and a finite wavelength instability index as
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in chapter 2. In section 5.4, we study the asymptotics of these instability indices in a

solitary wave limit, and show that the solitary wave theory (more precisely, the results of

Gardner) are recaptured in this limit. In section 5.5, we study the transverse instability

of the periodic traveling wave solutions of the gBBM within a model similar to that

studied in chapter 4. Finally, we study the nature of the spectrum in a neighborhood

of the origin and prove there are three branches of spectrum which bifurcate from the

origin analytically in the associated Floquet parameter.

5.2 Properties of the Periodic Traveling Wave Solutions of gBBM

In this section, we review the basic properties of the periodic traveling wave solutions of

the gBBM equation (5.1). As this basically parallels that of chapter 2, we only mention

these results briefly and do not go into much detail.

To begin, notice that equation (5.1) admits stationary traveling wave solutions of

the form u(x, t) = u(x − ct) where c > 1 which satisfy the traveling wave ordinary

differential equation

cuxxx − (c− 1)ux + (f(u))x = 0, (5.3)

i.e. they are stationary solutions of (5.1) in the traveling coordinate frame defined by

x− ct. Integrating (5.3) twice with respect to x yields the equations

cuxx − (c− 1)u + f(u) = a

c

2
u2

x −
(

c− 1
2

)
u2 + F (u) = au + E (5.4)

where F ′(u) = f(u) and the parameters a and E are constants of motion. Hence the

traveling wave solutions are reducible to quadrature and constitute a four-parameter

family of solutions of (5.1). Notice that in the solitary wave case, the boundary condi-

tions (exponential decay at ±∞) force a = E = 0, but there is no physical reason for

this restriction in the periodic traveling wave case. It follows that the solitary waves can

be considered a co-dimension two subset of the full four-parameter family of traveling
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wave solutions.

In order to guarantee the existence of periodic solutions of (5.3), we make the

standard assumptions from chapter 2 on the non-linearity f . In particular, we assume

the effective potential

V (u; a, c) = F (u)− (c− 1)
2

u2 − au

has a non-degenerate local minimum. Moreover, we consider only those periodic orbits

which are bounded by a homoclinic orbit in phase space, and do not themselves bound a

homoclinic orbit (other than the equilibrium solution). This places a natural restriction

on the parameter regime for our problem: we always assume we are within this open

region of R4 (see Definition 1 of chapter 2 for more details on this assumption). As

before, we can factor out one of four parameters defining the periodic traveling waves

by modding out the translation invariance: this is usually done by requiring ux(0) = 0

and V ′(u(0)) < 0. It follows that such solutions are even and have a local maximum at

x = 0. Moreover, this implies the roots u± of the equation E = V (u; a, c) for (a,E, c)

within this open region are C1 functions of (a,E, c). Also, notice that u(0) = u− and

V (u; a, c) < E for u ∈ (u−, u+). As is standard, one can use equation (5.4) to express

the period of the periodic wave u as

T (a,E, c) = 2
√

c

∫ u+

u−

du√
2 (E − V (u; a, c))

. (5.5)

The above interval can be regularized at the square root branch points u± by the

procedure discussed in chapter 2. Similarly, the mass and momentum of the periodic

wave can be expressed as

M(a,E, c) = 2
√

c

∫ u+

u−

u du√
2 (E − V (u; a, c))

P (a,E, c) = 2
√

c

∫ u+

u−

(
u2

√
2 (E − V (u; a, c))

+
√

2 (E − V (u; a, c))

)
du

where these integrals can be regularized at the square root branch points by the same
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procedure. In particular, by our assumptions on u±, and hence on the non-linearity

f , it follows that one can differentiate these functionals restricted to the periodic wave

u(x; a, E, c) with respect to the parameters (a,E, c). As in chapter 2, the gradients of

these quantities will play an important role in the subsequent theory.

Notice that the quantities T , M , and P satisfy a number of identities. In particular,

it is useful to consider the classical action

K(a,E, c) =
∫ T

0
u2

xdx = 2
√

c

∫ u+

u−

√
2 (E − V (u; a, c))du

(which is not itself conserved) since this then acts as a generating function for the

above conserved quantities. Indeed, it is clear the classical action satisfies the following

relations:

KE =
1
c
T

Ka =
1
c
M

Kc =
1
2c

P.

This establishes several useful identities between the gradients of these quantities. For

example, it immediately follows that Ta = ME and 2Tc = PE + 1
cT . These identities

will be useful in the forthcoming analysis.

5.3 Linearization and The Periodic Evans Function

Throughout this section, we assume that u(x; a,E, c) is a periodic traveling wave solu-

tions of (5.1) satisfying the hypothesis outlined in the previous section. The behavior

of infinitesimal perturbations of u is determined by the spectrum of the (non-local)

linearized operator
(
1− ∂2

x

)−1
∂x

(−c∂2
x + (c− 1)− f ′(u)

)
.
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In particular, by considering a solution to the partial differential equation (5.1) of the

form

ψ(x, t) = u(x; a, E, c) + εv(x, t) +O(ε2)

where |ε| ¿ 1 is considered as a small perturbation parameter, it follows from substi-

tuting into (5.1) and collecting terms at O(ε) that v must satisfy the equation

∂xLv = µDvt,

where L = −c∂2
x + (c− 1)− f ′(u) and D = 1− ∂2

x By taking the Laplace transform in

time, we are led to the spectral problem

∂xLv = µDv (5.6)

on the real Hilbert space L2(R)1. Throughout this paper, we consider the above op-

erators as acting on L2(R) with domain H3(R) corresponding to spatially localized

perturbations, or on Cb(R) with domain C3(R) corresponding to bounded uniformly

continuous perturbations. In both cases, the operator L is self adjoint and D is a pos-

itive operator and is hence invertible. In particular, notice that the operator D−1∂x is

skew-adjoint on L2(R). It follows that (5.6) can be written as

Av = µv, A = D−1∂xL.

It follows that the L2 spectrum of the operator A is entirely essential. Since the operator

A is a non-local operator with periodic coefficients, we recall basic definitions and results

from Floquet theory.

Definition 6. The monodromy operator M(µ) is defined to be the period map

M(µ) = Φ(T ; µ)
1As in chapter 2, this corresponds to considering localized perturbations of the underlying periodic

wave u. On could also study the stability to uniformly bounded continuous perturbations, but by
Floquet theory these result in the same spectral stability theories.
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where Φ(x;µ) satisfies the first order system

Φ(x; µ)x = H(x, µ)Φ(x; µ) (5.7)

subject to the initial condition Φ(0) = I, where I is the 3× 3 identity matrix and

H(x, µ) =




0 1 0

0 0 1

−1
c (µ + uxf ′′(u)) 1

c (c− 1− f ′(u)) µ
c




.

Definition 7. We say µ ∈ spec(A) is there exists a non-trivial bounded function ψ

such that Aψ = µψ or, equivalently, if there exists a λ ∈ S1 such that

det(M(µ)− λI) = 0.

Following Gardner we define the periodic Evans function D : C× C→ C to be

D(µ, λ) = det(M(µ)− λI).

Finally, we say the periodic solution u(x; a,E, c) is spectrally stable if spec(A) does not

intersect the open right half plane.

Remark 16. First, notice by the Hamiltonian nature of (5.6), spec(A) is symmetric

with respect to reflections about the real and imaginary axis. Thus, spectral stability

occurs if and only if spec(A) ⊂ Ri.

Secondly, since we are interested primarily with the roots of D(µ, λ) for λ on the

unit circle, we will frequently work with the function D(µ, eiκ) for κ ∈ R/2πZ, which is

actually the function considered by Gardner.

As we will see below, it follows from the integrable structure of (5.3) that the

function D(µ, 1) has a zero of multiplicity at least three at µ = 0. As λ varies on S1

there will be in general three branches µj(κ) of roots of D(µj(κ), eiκ) for κ small which
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bifurcate from the µ = 0 state. Assuming these branches are analytic2 in κ, it follows

that a necessary condition for spectral stability is thus

∂

∂κ
µj(κ)

∣∣
κ=0

∈ Ri. (5.8)

This leads one to the use of perturbation methods in the study of the spectrum of A
near the origin, exactly as in the analysis of chapter 2. Indeed, as we will see, the first

order terms of a Taylor series expansion of the three branches µj(κ) can be encoded as

roots of a homogeneous cubic polynomial, and hence spectral stability is determined by

the sign of the associated cubic discriminant. Moreover, it follows by the Hamiltonian

structure of (5.6) that in fact σ(A) ⊂ Ri if (5.8) holds and the branches are distinct.

We conclude this section by reviewing some basic global features of the spectrum

of the linearized operator A which are useful in a local analysis near µ = 0. We also

state some important properties of the Evans function D(µ, λ) which are vital to the

foregoing analysis.

Proposition 9. The spectrum of the operator A has the following properties:

(i) There are no isolated points of the spectrum. In particular, the spectrum consists

of piecewise smooth arcs.

(ii) The entire imaginary axis is contained in the spectrum, i.e. Ri ⊂ spec(A).

Moreover, the Evans function D(µ, λ) satisfies the following:

(iii) D(µ, λ) = −λ3 + a(µ)λ2 − a(−µ)eµT/cλ + eµT/c with a(µ) = tr(M(µ)).

(iv) The function a(µ) satisfies a(0) = 3, a′(0) = T
c .

Proof. The first claim follows that of Proposition 1 in chapter 2. We postpone the proof

of (iv) until Lemma 19.
2In general, for each j, the theory of branching solutions of non-linear equations guarantees the

existence of a natural number mj such that µj(·) is an analytic function of κ1/mj . As we will see in our
case, the Hamiltonian nature of the linearized operator A assures that mj = 1, and hence the roots are
in fact analytic functions of the Floquet parameter.
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Next, we prove claim (iii). First, notice that Abel’s formula along with the fact

that tr(H(x, µ)) = µ
c , where H(x, µ) is as in (5.7), implies that D(µ, 0) = eµT/c. As

Av = µv is invariant under the transformation x 7→ −x and µ 7→ −µ, we have as in the

case of the gKdV that M(µ) ∼ M(−µ)−1. If we define a(µ) as above and b(µ) such

that

det[M(µ)− λI] = −λ3 + a(µ)λ2 + b(µ)λ + eµT/c,

it follows that

det[M(µ)− λI] = det[M−1(−µ)− λI]

= −λ3 det[M−1(−µ)] det[M(−µ)− λ−1]

= −eµT/cλ3
(
−λ−3 + a(−µ)λ−2 + b(−µ)λ−1 + e−µT/c

)

= −λ3 − eµT/cb(−µ)λ2 − eµT/ca(−µ)λ + eµT/c.

Thus, it follows from (iii) that b(µ) = −eµT/ca(−µ) as claimed.

Claim (ii) follows from a symmetry argument. Since a(µ) is real on the real axis, it

follows by Schwarz reflection that for µ ∈ Ri we have a(µ) = a(µ). For µ ∈ Ri then the

Evans function takes the form

D(µ, λ) = −λ3 + a(µ)λ2 − eµT/ca(µ)λ + eµT/c.

It follows that

D(µ, λ) = −λ3eµT/cD(µ, λ
−1)

so that the roots of D(µ, λ) for a fixed µ ∈ Ri are symmetric about the unit circle. Since

there must be three such roots, one must live on the unit circle and hence µ ∈ spec(A)

as claimed.
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5.4 Local Analysis of the Period Map

In this section, we begin our study of the structure of the spectrum of the linearized op-

erator A in a neighborhood of the origin. To this end, we study the asymptotic behavior

of the Evans function in the limit µ → 0. We begin by proving that D(0, eiκ) has a zero

of multiplicity three at κ = 0 by explicitly calculating the Jordan normal form of M(0).

It follows from this calculation that λ = 1 is an eigenvalue of algebraic multiplicity

three and geometric multiplicity two. This fact reflects the following structure in the

manifold of solutions to the ordinary differential equation defining the traveling waves:

the traveling waves form a three parameter manifold, with traveling waves of constant

period forming a two parameter submanifold. The two eigenvectors of the period map

correspond to elements of the tangent plane to the submanifold of constant period so-

lutions, while the third vector in the Jordan chain is associated to the normal to the

constant period submanifold. By then treating M(µ) as a small perturbation of M(0),

we use a perturbation theory appropriate to the Jordan form of M(0) to determine the

dominant balance of the equation D(µ, eiκ) = 0 in a neighborhood of (µ, κ) = (0, 0).

From this information, we extract a modulational instability index which governs the

local normal form of the spectrum in a neighborhood of the origin. Finally, by a stan-

dard orientation index argument we derive a finite-wavelength instability index which

yields sufficient conditions for non-trivial intersections of the spectrum with the real

axis, immediately implying exponential instability of the underlying periodic wave.

5.4.1 Calculation of the Period Map at µ = 0

We begin by studying the structure of the operator M(0), which corresponds to un-

derstanding the null space of the operator A. Notice that since D is invertible, the

null space of A is determined by the null space of ∂xL, which leads us to the following

proposition.

Proposition 10. Let u = u( · ; a,E, c) be the solution of the traveling wave equation

(5.3) satisfying u(0; a,E, c) = u− and ux(0; a,E, c) = 0. A basis of solutions to the first
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order system

Yx = H(x, 0)Y

is given by

Y1(x) =




cux

cuxx

cuxxx




, Y2(x) =




cua

cuax

cuaxx




, Y3(x) =




cuE

cuEx

cuExx




,

where we have suppressed the dependence on (x; a, E, c). Moreover, a particular solution

to the inhomogeneous problem

Yx = H(x, 0)Y + W

where W = (0, 0, cDux) is given by

Y4(x) =




−cuc

−cucx

−cucxx




.

Proof. This is easily verified by differentiating (5.3) with respect x and the parameters

a, E, and c.

By the above proposition three linearly independent solutions of (5.7) are given by

the vector functions Y1, Y2, and Y3 above. We now wish to explicitly write down the

solution matrix in this basis U(x, 0) at x = T and x = 0. Notice by hypothesis, for any

a,E, c the solution u satisfies

u(0; a,E, c) = u− = u(T ; a,E, c) (5.9)

ux(0; a,E, c) = 0 = ux(T, a,E, c) (5.10)

uxx(0; a,E, c) = −1
c
V ′(u−; a, c) = uxx(0; a,E, c) (5.11)
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and, moreover, it follows from (5.3) that uxxx(0; a,E, c) = 0. Defining U(x, 0) =

[Y1(x), Y2(x), Y3(x)] it follows by differentiating the above relations that

U(0, 0) =




0 c∂u−
∂a c∂u−

∂E

−V ′(u−) 0 0

0 1− V ′′(u−)∂u−
∂a −V ′′(u−)∂u−

∂E




. (5.12)

Note that differentiating the relation E = V ′(u−; a, c) with respect to E gives

det(U(0, 0)) = −cV ′(u−)
∂u−
∂E

= −c

so these solutions are linearly independent at x = 0, and hence for all x. Thus, we can

compute the monodromy matrix M(µ) by determining U(T, 0) and right composing

with U(0, 0)−1.

The matrix U(T ; 0) can now be calculated by using the chain rule to differentiate

(5.9)-(5.11). For example, differentiating (5.9) with respect to a gives

∂u

∂a
(T ; a,E, c) + ux(T ; a, E, c)Ta(a,E, c) =

∂u−
∂a

from which it follows ua(T ; a,E, c) = ∂u−
∂a . Continuing in this manner yields

U(T, 0) = U(0, 0) +




0 0 0

0 V ′(u−)Ta V ′(u−)TE

0 0 0




.

This proves that U(T, 0)−U(0, 0) is a rank one matrix, which, as in chapter 2, naturally

leads one to the following proposition.

Proposition 11. There exists a basis in R3 such that the monodromy matrix M(µ)
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evaluated at µ = 0 takes the following Jordan normal form:

M(0) ∼




1 0 0

0 1 σ

0 0 1




(5.13)

where σ 6= 0 as long as Da,ET (a,E, c) 6= 0. In particular, the monodromy operator

at µ = 0 has a single eigenvalue λ = 1 with algebraic multiplicity three and geometric

multiplicity two as long as the period is not a critical point with respect to the parameters

a and E for a fixed wave speed c.

Remark 17. Notice that by Lemma 10 applies in this case, and hence we are guaranteed

that TE > 0 for all power-nonlinearities, and more generally for all nonlinearities f such

that f(u) and u are co-periodic.

5.4.2 Asymptotic Analysis of D(µ, eiκ) Near (µ, κ) = (0, 0)

We now use Proposition 11 to compute an asymptotic expansion of the characteristic

polynomial of M(µ) in a neighborhood of µ = 0. This is accomplished by treating

M(µ) as a small perturbation of the matrix M(0) constructed above.

Recall from Proposition 9 that the spectrum near µ = 0 is continuous. By the

analyticity of M(µ) in a neighborhood of µ = 0, we can expand M(µ) for small µ as

M(µ) = M(0) + µMµ(0) +
µ2

2
Mµµ(0) +O (|µ|3)

where Mµ(0) = [M (1)
i,j ] and Mµµ(0) = [M (2)

i,j ]. If one makes a similarity transform

M̃(µ) = V−1 M(µ)V so that M̃(0) is in the Jordan normal form (5.13) then a direct

calculation using the above second order expansion of M̃(µ) implies that in a neigh-
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borhood of µ = 0, the characteristic polynomial can be expressed as

D(µ, eiκ) = det
(
( M̃(µ)− I)− (eiκ − 1)I

)

= −η3 + η2

(
µ tr

(
M̃µ(0)

)
+

µ2

2
tr( M̃µµ(0))

)

− η

(
µM̃

(1)
3,2 σ + µ2

(
1
2

(
tr( M̃µ)

)2
− 1

2
tr( M̃

2

µ)− σ

2
M̃

(2)
3,2

))

− σ(M̃ (1)
1,1 M̃

(1)
3,2 − M̃

(1)
3,1 M̃

(1)
1,2 )µ2

+ µ3
(
det

(
M̃µ(0)

)
+ σS

)
+O (4) , (5.14)

where η = eiκ − 1, S represents mixed terms from M̃µ(0) and M̃µµ(0), σ is as in

Proposition 11, and the notation O (4) represents terms whose degree is four or higher.

Notice there are no other µ3 terms since M(0) − I has rank one. Our next goal is to

determine the dominant balance of the equation D(µ, eiκ) = 0 in a neighborhood of

(µ, κ) = (0, 0). As in chapter 2, the symmetry M(µ) ∼ M−1(−µ) causes a number of

terms in (5.14) to vanish, which leads to an expansion in integer powers of µ. This is

the content of the next lemma.

Lemma 19. If Dµµµ(0, 1) 6= 0, the equation D(µ, eiκ) = 0 has the following normal

form in a neighborhood of (µ, κ) = (0, 0):

−(iκ)3 +
(iκ)2µT

c
+

iκµ2

2

(
tr (Mµµ(0))−

(
T

c

2))
+

µ3

6
Dµµµ(0, 1) +O(4) = 0. (5.15)

whose Newton diagram is depicted in Figure 5.1, where O(4) represents terms of degree

four and higher.

Proof. Define the function b in a neighborhood of µ = 0 by

det[(M(µ)− I)− (eiκ − 1)I] = −η3 + (a(µ)− 3)η2 + b(µ)η + D(µ, 1). (5.16)

where a(µ) = tr(M(µ)) and η = eiκ − 1. Notice in particular that η = iκ +O (
κ2

)
in
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0

1

2

3

Figure 5.1: The Newton diagram corresponding to the asymptotic expansion of
D(µ, eiκ) = 0 in a neighborhood of (µ, κ) = (0, 0) is shown to O(|µ|3). Terms asso-
ciated to open circles with dashed boundary are shown to vanish due to the natural
symmetries inherent in (5.6). The open circles with dark boundary are non-vanishing
terms which are a part of the lower convex hull, and hence contribute to the domi-
nant balance. The closed dark circles lie above the lower convex hull and thus do not
contribute to the leading order asymptotics.

a neighborhood of κ = 0. By (5.14), it follows

a(µ) = tr(M(µ)) = 3 + µ tr(Mµ(0)) +
µ2

2
tr(Mµµ(0)) +

µ3

6
tr(Mµµµ(0)) +O(|µ|4)

b(µ) =
1
2

(
tr((M(µ)− I)2)− tr(M(µ)− I)2

)

= −µM
(1)
3,2 σ − µ2

(
1
2

tr(Mµ)2 − 1
2

tr(M2
µ)− σ

2
M̃3,2

)
+O(|µ|3)

D(µ, 1) = −σ(M (1)
1,1 M

(1)
3,2 −M

(1)
3,1 M

(1)
1,2 )µ2 + (det(Mµ(0)) + σS) µ3 +O(|µ|4)

From the Hamiltonian symmetry of (5.6), we have that

D(µ, 1) = det (M(µ)− I)

= det
(
M(−µ)−1 − I

)

= −e−µT/cD(−µ, 1).

It immediately follows that Dµµ(0, 1) = −2σ(M (1)
1,1 M

(1)
3,2 − M

(1)
3,1 M

(1)
1,2 ) = 0 and hence
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D(µ, 1) = O(|µ|3).
Similarly, we have

e−µT/cD(µ, λ) = −λ3 det
(

M(−µ)− 1
λ
I
)

= − (λ− 1)3 − (a(−µ)− 3)λ (λ− 1)2

+ b(−µ)λ2 (λ− 1)− λ3D(−µ, 1)

By comparing the O(λ2) and O(λ3) terms above, we have the relations





e−µT/ca(µ) = 2a(−µ)− b(−µ)− 3, and

−e−µT/c = −a(−µ) + b(−µ)−D(−µ, 1) + 2.

Differentiating with respect to µ and evaluating at µ = 0 immediately implies b′(0) = 0

and a′(0) = T
c . Similarly, it follows that b′′(0) = a′′(0) − (

T
c

)2 which completes the

proof.

It follows that the structure of spec (A) in a neighborhood of the origin is, to leading

order, determined by the above homogeneous polynomial in κ and µ. Due to the triple

root of D(·, 1) at µ = 0 the implicit function theorem fails, but in a seemingly trivial

way which can be easily corrected. This leads us to the following theorem giving a

“modulational stability index” for traveling wave solutions of (5.1).

Theorem 17. With the above notation, define

∆(f ; u) =
1
4

(
tr(Mµµ(0))−

(
T

c

)2
)2 (

2 tr(Mµµ(0))−
(

T

c

)2
)

− 27
(

Dµµµ(0, 1)
6

)2

−Dµµµ(0, 1)

(
3 tr(Mµµ(0))

2
− 5

(
T
c

)2

3

) (
T

c

)

where f denotes the dependence on the nonlinearity in (5.1), and suppose that Dµµµ(0, 1)

is non-zero. If ∆ > 0, then the spectrum of the linearized operator A in a neighborhood

of the origin consists of the imaginary axis with a triple covering. If ∆ < 0, then

spec(A) in a neighborhood of the origin consists of the imaginary axis with multiplicity
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one together with two curves which are tangent to lines through the origin.

Proof. Since the leading order piece of the Evans function is homogeneous by Lemma

19, it seems natural to work with the projective coordinate y = iµ
κ . Making such a

change of variables, Lemma 19 implies the equation D(µ, eiκ) = 0 can be written as

1 +
yT

c
− y2

2

(
tr (Mµµ(0))−

(
T

c

)2
)

+
y3

6
Dµµµ(0, 1) + κE(κ, y) = 0 (5.17)

where E(κ, y) is continuous in a neighborhood of the origin. Let y1,2,3 denote the three

roots of the above cubic in y corresponding to E(κ, y) = 0. Assuming ∆ 6= 0 it follows

that y1,2,3 are distinct and hence the implicit function theorem applies giving three

distinct solutions of (5.17) in a neighborhood of each of the y1,2,3. In terms of the

original variable µ, this gives three solution branches

µ1,2,3 = −iy1,2,3κ +O(κ2).

If ∆ > 0, then y1,2,3 ∈ R, giving three branches of spectrum emerging from the origin

tangent to the imaginary axis. From the Hamiltonian symmetry of (5.6), the spectrum

is symmetric with respect to reflections across the imaginary axis and hence ∆ > 0

implies these thee branches of spectrum must in fact lie on the imaginary axis, proving

the existence of an interval of spectrum of multiplicity three on the imaginary axis. In

the case ∆ < 0, it follows that one of the roots, y1 say, is real while the other two y2,3

occur in a complex conjugate pairs, giving one branch along the imaginary axis and

two branches emerging from the origin tangent to lines through the origin with angel

arg(−iy2,3): see Figure 5.2.

Remark 18. The modulational instability index ∆ derived above is considerably more

complicated than the one derived in chapter 2 for generalized Korteweg-de Vries equation

ut = uxxx − cux + (f(u))x . (5.18)

When considering the spectral stability of periodic traveling wave solutions of (5.18), it

152



Figure 5.2: When ∆(f ; u) < 0, the local normal form of spec(A) consists of a segment of
the imaginary axis union with two straight lines making equal angles with the imaginary
axis. Notice that these lines intersect at the origin, corresponding to the fact that 1 is
an eigenvalue of M(0) with algebraic multiplicity three. In this picture, the horizontal
dashed line represents the real axis, and the dashed lines which are tangent to he straight
dark lines represent the true spectrum of the linearized operator.

was shown that there exists a modulational instability index ∆gKdV such that ∆gKdV < 0

implies modulational instability, and ∆gKdV > 0 implies modulational stability. In this

case, the dominant balance is somewhat simpler due to the fact that the trace of the

operator Mµ(0) vanishes, and hence the κ2µ term in the corresponding Newton diagram

vanishes. As a result, the modulational instability index took the form

∆gKdV =
1
2

( tr(Mµµ(0)))3 − 1
3

(Dµµµ(0, 1)))2 ,

where here D represents the Evans function for equation (2.1). It follows that the sign

of Dµµµ(0, 1) does not effect the modulational instability of such periodic solutions of

equation (5.18). However, in the case of the gBBM equation, the fact that a′(0) 6= 0

seems to suggest that the sign of the sign of this orientation index (see next section) has

an impact on the modulational stability of the periodic traveling wave. In fact, in section

4 we prove exactly this fact in the case of a power-nonlinearity f(u) = up+1/(p+1): we

prove the long-wavelength periodic traveling wave solutions of (5.1) are modulationally
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unstable if and only if the limiting homoclinic orbit (solitary wave) is exponentially

unstable.

Moreover, notice that if one (formally) sets the quantity a′(0) = T
c to zero in The-

orem 17, the modulational instability index ∆ reduces to that derived for the KdV in

chapter 2, i.e. it reduces to ∆gKdV .

Our next goal is to use the integrable nature of (5.6) to express Dµµµ(0, 1) and

tr(Mµµ(0)) in terms of the underlying periodic traveling wave u. This can be done very

explicitly by using the Hamiltonian symmetry M(µ) ∼ M(−µ)−1 for equation (5.6).

Notice that while we have chosen to express the coefficients of ∆ in terms of tr(Mµµ(0))

and Dµµµ(0, 1), which suggests they arise at second and third order in a perturbation

calculation for small µ, these quantities can be expressed in terms of quantities which

arise at first and second order in µ due to the invariance of the problem under the map

µ → −µ, x → −x. Moreover, it is interesting to note that while all first order terms

contribute, only a few terms arising at second order actually contribute: these are terms

associated with the minors of the off-diagonal piece of the unperturbed Jordan form.

These second order terms are computable via a single quadrature, and can be found

explicitly by a first order perturbation argument.

Theorem 18. The following identities hold:

Dµµµ(0, 1) = −3{T,M,P}a,E,c,

c tr (Mµµ(0)) = c

(
{T, P}E,c + 2{M, P}a,E +

2
c

(MaT − TaM)
)
− 2V ′(u−){T, M}a,E .

where {g, h}α,β represents the Jacobian of the transformation (g, h) 7→ (α, β), and

{g, h, r}α,β,γ is defined similarly, and M = M(a,E, c) is the functional
∫ T
0 u dx, which

represents the mass of the underlying periodic traveling wave.

Remark 19. The above formula for tr(M(0)) differs from that for the gKdV by the

addition of the last two terms on the right hand side. The (MaT − TaM) appears from

the explicit dependence on c in the formula P = 2cKc, while the V ′(u−){T, M}a,E terms
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enters via the V ′(u−) in the formula for w1
1 below. Neither of these terms are required

in the parallel modulational theory for the gKdV equation.

Proof. Let wi(x;µ), i = 1, 2, 3, be three linearly independent solutions of (5.7), and let

W(x, µ) be the solution matrix with columns wi. Expanding the above solutions in

powers of µ as

wi(x, µ) = w0
i (x) + µw1

i (x) + µ2w2
i (x) +O(|µ|3)

and substituting them into (5.7), the leading order equation becomes

d

dx
w0

i (x) = H(x, 0)w0
i (x).

Using Proposition 10, we choose w0
i (x) = Yi(x).The higher order terms in the above

expansion yield
d

dx
wj

i (x) = H(x, 0)wj
i (x) + V j−1

i (x), j ≥ 1, (5.19)

where V j−1
i =

(
0, 0,−c−1D(wj−1

i )1
)t

and (v)1 denotes the first component of the vector

v. Notice that for each of the higher order terms j ≥ 1, we require wi
j(0) = 0. Notice

this implies that W(0, µ) = U(0, 0) in a neighborhood of µ = 0, where U(0, 0) is

defined in (5.12). The solution of the inhomogeneous problem is given by the variation

of parameters formula

wj
i (x) = W(x, 0)

∫ x

0
W(s, 0)−1V j−1

i (s)ds (5.20)

=




cux

∫ x
0 D(wj−1

i )1{u, ux}a,E dz − ua

∫ x
0 D(wj−1

i )1dz + uE

∫ x
0 D(wj−1

i )1u dz

cuxx

∫ x
0 D(wj−1

i )1{u, ux}a,E dz − uax

∫ x
0 D(wj−1

i )1dz + uEx

∫ x
0 D(wj−1

i )1u dz

cuxxx

∫ x
0 D(wj−1

i )1{u, ux}a,E dz − uaxx

∫ x
0 D(wj−1

i )1dz + uExx

∫ x
0 D(wj−1

i )1u dz




for j ≥ 1. Notice we have used the identities c{u, ux}E,x = −1 and c{u, ux}x,a = u

extensively in the above formula, which can be easily derived via equation (5.4). Indeed,

differentiating (5.4) with respect to E and subtracting uEuxx immediately yields the

first identity.

Now, notice that it would be a daunting task to use (5.20) to the specified order
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needed. However, the integrable structure of (5.6) allows for an alternative, yet equiva-

lent, expression in the case i = j = 1 which makes a seemingly second order calculation

come in at first order. Indeed, in this case equation (5.19) is equivalent to L0w
1
1 = ux

and hence it follows from Proposition 10 that we can choose w1
1 to be the function




−cuc

−cu′c

−cu′′c




+
(

u− +
1
c
V ′(u−; a, c)

)



cua

cu′a

cu′′a



−

(
u2−
2

+
1
c
V ′(u−; a, c)

)



cuE

cu′E

cu′′E




where the above constants in front of Y2 and Y3 are determined by the requirement

w1
1(0) = 0. Thus, one can determine the second order variation of w1 in µ by using

(5.20) to compute the first order variation of the function w1
1 defined above. Defining

δ W(µ) := W(x, µ)
∣∣T
x=0

, we see that δ W(µ) satisfies the asymptotic expansion




O(µ2) O(µ) O(µ)

µV ′(u−)P (u−) +O(µ2) V ′(u−)Ta V ′(u−)TE

O(µ2) O(µ) O(µ)




in a neighborhood of µ = 0, where P (x) = −Tc +
(
x + 1

cV
′(x)

)
Ta −

(
x2

2 + 1
cV

′(x)
)

TE

and the higher order terms are determined by (5.20), it follows that

D(µ, 1) = det
(
δ W(µ)W(0, 0)−1

)
= O(µ3).

Now, by a straightforward yet tedious calculation, we have that

det (δ W(µ)) =
c

2
{T, M,P}a,E,c µ3 +O(µ4).

Since det(W(0, 0)) = −c, it follows that Dµµµ(0, 1) = −3{T,M,P}a,E,c as claimed.
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Another straightforward yet tedious calculation yields

tr(Mµµ(0)) = − 2
µ2

tr
(
cof

(
δ W(µ)W(0, 0)−1

)) ∣∣
µ=0

= {T, P}E,c + {M, P}a,E + 2{M, T}a,c − 1
c
{T, M}a,EV ′(u−).

By recalling that Tc = 1
2PE + 1

cT and Mc = 1
2Pa + 1

cM gives

{M, P}a,E + 2{M, T}a,c = 2{M,P}a,E +
2
c

(MaT − TaM)

which completes the proof.

5.4.3 Analysis of spec (A) ∩ R: Orientation Index Calculation and Connection
to Whitham Modulation Theory

In this section, we derive a finite wavelength instability index which counts mod 2 the

number of unstable periodic eigenvalues in the open right half plane. Notice since the

operator D−1∂x is skew-adjoint and L is self-adjoint on L2(R), the number of unstable

eigenvalues of L on the space L2
per([0, T ]) bounds above the number of unstable eigen-

values of A with positive real part (counting multiplicities). Since L is a Hill operator

as in the case of the gKdV, it follows that

n(L) =





1, if TE > 0;

2, if TE < 0.

Here, n(L) represents the number of negative eigenvalues of L on the space L2
per([0, T ]).

Thus, if TE > 0 any unstable periodic eigenvalue of A must be real: in particular, if

the nonlinearity f is such that f(u) and u are both periodic with minimal period T , it

follows from Lemma 10 from chapter 3 that TE > 0. As a result, throughout this section

we restrict ourselves to counting the number of real unstable periodic eigenvalues of the

operator A. Notice that since the set σ(A) is continuous by Proposition (9), this im-

mediately implies the existence of unstable spectrum supported outside a neighborhood
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of the origin. This is achieved by what amounts to an orientation index calculation,

commonly used to study the stability properties of solitary waves. We begin with the

following lemma.

Lemma 20. The function D(·, 1)
∣∣
R : R→ R satisfies the following asymptotic relation:

lim
R3µ→∞

D(µ, 1) = −∞.

Proof. This follows from a simple calculation. By standard asymptotic arguments the

monodromy operator satisfies

M(µ) ∼ exp (A(µ)T/c) , |µ| À 1, (5.21)

where

A(µ) =




0 c 0

0 0 c

−µ 0 µ




.

The eigenvalues λj of A(µ) are rather complicated, but for µ large and real they satisfy

Re(λj) ∼ ajµ, where

a1 = 1

a2 = a3 =
1
3
− 1

322/321/3
− 21/3

621/3
.

It follows that

a(µ) ∼ ea1µT/c + ea2µT/2c + ea3µT/2c

and thus, since a2 = a3 < 0 < a1 < c, the leading order term of

D(µ, 1) = −1 + a(µ)− a(−µ)eµT + eµT

as µ → +∞ comes from −a(−µ)eµT , which completes the proof.

From this simple asymptotic relation, we have the following theorem guaranteeing
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the existence of unstable spectrum supported away from µ = 0.

Theorem 19. If {T, M,P}a,E,c < 0, then the number of roots of D(µ, 1) (i.e. the

number of periodic eigenvalues of A) on the positive real axis is odd. In particular,

spec (A) ∩ R∗ 6= ∅ and the periodic traveling wave u(x; a,E, c) is spectrally unstable.

Proof. By our work in the proof of Lemma 19, we have that D(0, 1) = Dµ(0, 1) =

Dµµ(0, 1) = 0 and hence D(µ, 1) = O(|µ|3). Thus, if Dµµµ(0, 1) < 0 for small positive

µ, the number D(µ, 1) is negative for small positive µ. Since D(µ, 1) is positive for real

µ sufficiently large, we know that D(±µ∗, 1) = 0 for some µ∗ ∈ R∗. The proof is now

complete by Theorem 18.

Corollary 9. Suppose the nonlinearity is such that u and f(u) are co-periodic of period

T and suppose that {T, M, P}a,E,c 6= 0 at this solution. Then the periodic traveling

wave solution u of (5.1) is spectrally unstable to T periodic perturbations if and only if

{T, M, P}a,E,c 6= 0.

We now wish to give insight into the meaning of {T, M, P}a,E,c = 0 at the level

of the linearized operator A. To this end, we consider the linearized operator A as

acting on H = L2
per(0, T ), the space of T -periodic L2 functions on R. To begin, we

make the assumption that {T, M}a,E and {T, P}a,E do not simultaneously vanish. This

assumption will be shown equivalent with the periodic null-space reflecting the structure

of the monodromy at the origin (see Proposition 11). Throughout this brief discussion,

we assume that {T, M}a,E 6= 0: trivial modifications are needed if {T, M}a,E vanishes

but {T, P}a,E does not. First, define the functions

φ0 = {T, u}a,E , ψ0 = 1,

φ1 = {T, M}a,E ux, ψ1 =
∫ x

0
Dφ2(s)ds,

φ2 = {u, T, M}a,E,c ψ2 = −{T, M}E,c + {T, M}a,EDu,
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Clearly, each of these functions belong to H and

Aφ0 = 0 A†ψ0 = 0

Aφ1 = 0 A†ψ1 = ψ2

Aφ2 = −φ1 A†ψ2 = 0.

In particular, we have used the fact that D−1(1) = 1 on H. Thus, it follows that the

periodic null space of A is generated spanned by the functions φ0 and φ1. Moreover,

since

〈φ0, ψ0〉 = {T,M}a,E

〈φ0,Du〉 = {T, P}a,E

the assumption that {T,M}a,E and {T, P}a,E do not simultaneously vanish implies that

Nper

(A2
) − Nper (A) = span(φ2), thus reflecting the normal form of the period map

(see Proposition 11).

Finally, we study the structure of the generalized periodic null space, and seek

conditions for which there is no non-trivial Jordan chain of length two. By the Fredholm

alternative, such a chain exists if and only if

〈Du, φ2〉 = {T,M,P}a,E,c = 0.

Thus, the vanishing of {T,M,P}a,E,c is equivalent with a change in the generalized

periodic-null space of the linearized operator A. This insight has a nice relationship

with formal Whitham modulation theory. One of the big ideas in Whitham theory is

to locally parameterize the periodic traveling wave solution by the constants of motion

for the PDE evolution. The non-vanishing of certain Jacobians is precisely what allows

one to do this. In fact, the non-vanishing of {T, M, P}a,E,c is equivalent to demanding

that, locally, the map (a,E, c) 7→ (T, M, P ) have a unique C1 inverse: In other words,

the constants of motion for the gBBM flow are good local coordinates for the three-
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dimensional manifold of periodic traveling wave solutions (up to translation). Similarly,

non-vanishing of {T,M}a,E and {T, P}a,E is equivalent to demanding that the matrix




Ta Ma Pa

TE ME PE




have full rank, which is equivalent to demanding that the map (a, E) 7→ (T,M,P ) (for

fixed c) have a unique C1 inverse, i.e. two of the conserved quantities provide a smooth

parametrization of the family of periodic traveling waves of fixed wave-speed.

To summarize, the vanishing of {T, M, P}a,E,c, is connected with a change in the Jor-

dan structure of the linearized operatorA considered onH. In particular, {T,M, P}a,E,c

ensures the existence of a non-vanishing Jordan piece in the generalized periodic null-

space of dimension exactly one. Moreover, and perhaps, more importantly, it guarantees

that infinitesimal variations in the constants arising from reducing the family of peri-

odic traveling waves to quadrature are enough to generate the entire generalized periodic

null-space of the linearized operator A: Such a condition is obviously necessary in our

calculations. This suggests trying to develop a rigorous connection between Whitham

modulation theory and the results of this paper. Notice that the above analysis of

the action of A on H is the beginning of the development of a perturbation theory

based on the Floquet-parameter - in essence, based on the Floquet-Bloch decomposi-

tion. While we have not yet carried out such an analysis, we believe it would be a useful

and interesting calculation.

5.5 Analysis of Stability Indices in the Solitary Wave Limit

The goal of this section is to study the long-wavelength asymptotics of the stability

indices derived in section 3. In particular, we restrict ourselves to the case of a power-

nonlinearity f(u) = up+1/(p + 1). This restriction is vital to our calculation: in this

case we gain an additional scaling symmetry. In particular, if v(x; a,E) satisfies the
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differential equation

1
2
v2
x − v2 +

1
(p + 1)(p + 2)

vp+2 = au + E, (5.22)

then a straight forward calculation shows that we can express the periodic solution

u(x; a, E, c) as

u(x; a,E, c) = (c− 1)1/pv

((
c− 1

c

)1/2

x;
a

c1+1/p
,

E

c1+2/p

)
. (5.23)

This additional scaling allows explicit calculations of Pc, which ends up determining the

stability of periodic traveling wave solutions of (5.1) of sufficiently long wavelength.

A reasonable guess would be that long-wavelength periodic traveling wave solutions

of (5.1) have the same stability properties as the limiting homoclinic orbit (solitary

wave). However, as noted in the introduction, this is a highly singular limit and so

it is not immediately clear whether such results are true. It is well known that the

solitary wave is spectrally unstable if and only if p > 4 and 1 < c < c0(p) for some

critical wave speed c0(p). It follows from the work of Gardner into the stability of long-

wavelength solutions of (5.1) that periodic waves sufficiently close to the homoclinic

orbit are unstable if the solitary wave is unstable. In particular, it is proved that the

linearized operator A for the periodic traveling wave u with sufficiently long wavelength

has a “loop” of spectrum in the neighborhood of any unstable eigenvalues of the limiting

solitary wave.

In terms of the finite-wavelength instability index, it seems reasonable by Theorem

19 to expect that for periodic traveling wave solutions of sufficiently long wavelength,

{T, M, P}a,E,c < 0 for if and only if p > 4 and 1 < c < c0(p). What is unclear is

whether such a result should be true for the modulational instability index ∆. Indeed,

although Gardner’s results prove that the spectrum of the linearization about a periodic

traveling wave of sufficiently long wavelength in the neighborhood of the origin contains

the image of a continuous map of the unit circle, to our knowledge it has never been

proved that this map is injective. Thus, it is not clear from Gardner’s results whether
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a modulational instability will arise from this eigenvalue since it is possible this “loop”

is confined to the imaginary axis.

The following theorem proves a modulational instability does occur when ever the

limiting solitary wave is unstable, and answers the corresponding question for the finite

wavelength instability index. This theorem is based on asymptotic estimates of the

instability indices derived in section 3.In particular, we prove the sign of both instability

indices in the solitary wave limit is determined by the sign of ∂
∂cP , where P = P (a,E, c)

is the momentum of the periodic wave u(x; a,E, c). The proof is based on a more

technical lemma, which shows that ∂
∂aM(a, E, c) < 0 for waves of sufficiently long

wavelength, i.e. for a,E sufficiently close to zero. The proofs of this lemma is given

after our main theorem for this section, which is the following.

Theorem 20. In the case of power non-linearity f(u) = up+1/(p + 1), there always

exist unstable periodic traveling waves in a neighborhood of the solitary wave (a,E = 0)

if p > 4 and 1 < c < c0(p), where c0(p) is the critical wavespeed determined by the

non-linearity. Moreover, periodic traveling wave solutions to (5.1) of sufficiently long

wavelength exhibit a modulational instability if and only if p > 4 and 1 < c < c0(p).

Proof. When a and E are sufficiently small, there exist two solutions r1 < r2 of E =

V (x; a, c) in a neighborhood of the origin, and a third solution r3 bounded away from

the origin. In the solitary wave limit a, E → 0 a straight forward calculation gives that

r2−r1 = O
(√

a2 − 2(c− 1)E
)
. As in chapter 2, we thus have the following asymptotics
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for small a and E:

P (a,E, c) = O(1)

M(a,E, c) = O (
a ln

(
a2 − 2(c− 1)E

))

Ma(a,E, c) = O
(

a2

a2 − 2(c− 1)E

)

T (a,E, c) = O (
ln

(
a2 − 2(c− 1)E

))

Ta(a,E, c) = O
(

a

a2 − 2(c− 1)E

)
= ME(a,E, c)

TE(a,E, c) = O
(

1
a2 − 2(c− 1)E

)

Tc(a,E, c) = O
(

E

a2 − 2(c− 1)E

)
= 2PE +

1
c
T.

Thanks to the above scaling we know Mc = 2Pa + 1
cT can be expressed as a linear

combination of M , Ma, and ME = Ta. Similarly, Pc can be expressed as a linear

combination of P , 2Pa = Mc − 1
cT and PE . It follows that the asymptotically largest

minor of {T, M, P}a,E,c is −TEMaPc and, moreover,

tr (Mµµ(0)) ∼ TEPc.

Since Ma < 0 and TE > 0 by Lemmas 21 and 10 for a and E sufficiently small, it follows

that both stability indices are determined by the sign of Pc(a,E, c) in the solitary wave

limit. The theorem now follows by Lemma 22.

Remark 20. Notice that the fact that the finite wavelength instability index is deter-

mined by the sign of Pc in the solitary wave limit is not surprising, since this is exactly

what detects the stability of solitary waves. What is surprising is that the same quan-

tity controls the modulational stability index in the same limit. As mentioned above, it

has not been know if the instability of the limiting solitary wave forces a modulational

instability: the answer is shown to be affirmative by Theorem 20.

In order to complete the proof Theorem 20, we must prove a few more technical

lemmas. The first two are used in showing that the sign of the modulational and finite-
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wavelength instability indices are determined completely by the sign of Pc(a,E, c) in

the limit as a,E tend to zero.

Lemma 21. For a,E sufficiently small, Ma(a,E, c) ≤ 0 for all c > 1.

Proof. Notice it is sufficient to prove ∂
∂aM(a, 0, c) ≤ 0 for all c > 1 and a sufficiently

small. Now, M(a, 0, c) can be written as

M(a, 0, c) =
√

2c

∫ r(a,c)

0

√
u du√

a + c−1
2 u− 1

(p+1)(p+2)u
p+1

where r(a, c) is the smallest positive root of the polynomial equation a + c−1
2 r −

1
(p+1)(p+2)r

p+1 = 0. Setting a = ((p + 1)(p + 2))1/pα, we have

M (α,E, c) = ((p + 1)(p + 2))1/p
√

2c

∫ r̃(α,c)

0

√
u du√

α + c−1
2 u− up+1

where r̃(α, c) is the smallest positive root of the polynomial α+ c−1
2 r−rp+1 = 0. Notice

for a fixed wave speed c > 1, r̃(α, c) is a smooth function of α for α sufficiently small

and satisfies

r̃(α, c) =
(

c− 1
2

)1/p

+
2a

p(c− 1)
+O(a2).

The goal is to now rewrite the above integral over a fixed domain and show that the

integrand is a decreasing function of α for a fixed c > 1.

Making the substitution u → r̃(α, c)u yields the expression

M(α, 0, c)
((p + 1)(p + 2))1/p

√
2c

=
∫ 1

0

√
u du√

α r̃(α, c)−3 +
(

c−1
2

)
u r̃(α, c)−2 − r̃(α, c)p−2 up+1

Now, as in chapter 2 we can use the above expansion of r(a, c) to conclude that

∂

∂α

∣∣
α=0

(
α r̃(α, c)−3 +

(
c− 1

2

)
u r̃(α, c)−2 − r̃(α, c)p−2 up+1

)

is positive on the open interval (0, 1) for all p ≥ 1 and c > 1, which completes the

proof.
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To complete the proof of Theorem 20, we must understand the asymptotic behavior

for a fixed wavespeed c > 1 of the quantity Pc(a,E, c) in the solitary wave limit. This

is the content of the following lemma.

Lemma 22. In the case of power non-linearity f(u) = up+1/(p+1), we the momentum

P = P (a,E, c) satisfies

∂

∂c
P (a,E, c) =

(c− 1)2/p−1/2c1/2I
(

4
p

)

2pc(c− 1)

(
4c− p +

(4c + p)(c− 1)p
(4 + p)c

)
+O(|a|+ |E|)

in the solitary wave limit (a,E) → (0, 0), where I(r) =
∫∞
−∞ sechr(x)dx. In particular,

for a and E sufficiently small, if p < 4 then ∂
∂cP (a, E, c) > 0 for all c > 1 while if p > 4

then ∂
∂cP (a,E, c) < 0 for 1 < c < c0(p) and ∂

∂cP (u; a,E, c) > 0 for c > c0(p), where

c0(p) =
p

(
1 +

√
2 + 1

2p
)

4 + 2p
.

Proof. The proof is based on scaling and a limiting argument. To begin, let v =

v(x; a,E) satisfy the differential equation (5.22) so that u(x; a,E, c) can be expressed

via scaling as in (5.23), and assume with out loss of generality that x = 0 be an absolute

max of v(x; a,E, c). Clearly, the solitary wave limit corresponds to taking (a,E) → (0, 0)

with fixed wave speed c > 1. Notice that on any compact subset Γ of R, we have

v(x; a,E) →
(

(p + 2)(p + 1)
2

)1/p

sech2/p
(p

2
x + x0

)

uniformly as (a, E) → (0, 0) on Γ for some x0 ∈ R. Using (5.22), it follows that

∫ T ((c−1)/c)1/2

0
v2(x)dx =

√
2

∫ ũ+

ũ−

u2 du√
E + v2 − 1

(p+1)(p+2)v
p+2 + av

where ũ± are the roots of E + v2 − 1
(p+1)(p+2)v

p+2 + av = 0 satisfying the original

hypothesis of the roots u± of E − V (u; a, c) = 0. Since
∫ T ((c−1)/c)1/2/2

−T ((c−1)/c)1/2/2
v2(x)dx =

O(1) as (a, E) → (0, 0), the dominated convergence theorem along with the fact that
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∫ T ((c−1)/c)1/2/2

−T ((c−1)/c)1/2/2
v2(x)dx is a C1 function of a and E implies that

∫ T ((c−1)/c)1/2/2

−T ((c−1)/c)1/2/2
v(x; a,E)2dx =

(
(p + 2)(p + 1)

2

)2/p 1
p
I

(
4
p

)
+O(|a|+ |E|).

Similarly, it follows that

∫ T ((c−1)/c)1/2/2

−T ((c−1)/c)1/2/2
vx(x; a,E)2dx =

(
(p + 2)(p + 1)

2

)2/p 1
4 + p

I

(
4
p

)
+O(|a|+ |E|).

Using (5.23), we now have

p

(
(p + 2)(p + 1)

2

)−2/p ∫ T/2

−T/2

(
u(x; a,E, c)2 + ux(x; a,E, c)2

)
dx

= (c− 1)2/p−1/2c1/2I

(
4
p

)
+ (c− 1)2/p+1/2c−1/2 p

4 + p
I

(
4
p

)

+O(|a|+ |E|)

as a,E → 0, and hence it follows by differentiation that

p

(
(p + 2)(p + 1)

2

)−2/p ∂

∂c

∫ T/2

−T/2

(
u(x; a, E, c)2 + ux(x; a,E, c)2

)
dx =

(c− 1)2/p−1/2c1/2I
(

4
p

)

2pc(c− 1)

(
4c− p +

(4c + p)(c− 1)p
(4 + p)c

)

+O(|a|+ |E|)

as claimed, where we have used that Tcu
2− = O(|a| + |E|). The lemma now follows by

solving the quadratic equation (4+ p)c(4c− p)+ (4c+ p)(c− 1)p = 0 for c and recalling

the restriction that c > 1.

The proof of Theorem 20 is now complete by Lemmas 21, 10, and 22. As a conse-

quence, the finite-wavelength instability index {T,M,P}a,E,c seems to be a somewhat

natural generalization of the solitary wave stability index, in the sense that the well

known stability properties of solitary waves are recovered in a long-wavelength limit.

Moreover, this gives an extension of the results of Gardner in the case of generalized
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BBM equation by proving the marginally stable eigenvalue of the solitary wave at the

origin contributes to modulational instabilities of nearby periodic waves when ever the

solitary wave is unstable.

5.6 Transverse Instabilities of gBBM

In this final section, we use the above Evans function techniques to derive a sufficient

condition for the periodic gBBM traveling waves to be spectrally unstable to long-

wavelength transverse perturbations. Suppose we have a periodic traveling wave solu-

tion u(x; a,E, c) of (5.1) which is spectrally stable as a solution of the gBBM equation.

We wish to examine the spectral stability of u to long-wavelength perturbations in the

framework of the Zakharov-Kuznetsov-gBBM (ZK-gBBM) equation

ut − (c− 1)ux + (f(u))x + cuxxx + (uxt + uyy)x = 0 (5.24)

As u is a solution to (5.1), it is clearly a solution to (5.24) and hence it makes sense

to discuss its spectral stability (in this section, spectral stability will refer to spectral

stability in the ZK-gBBM model). Linearizing (5.24) around u yields

Dvt = ∂x

(L+ ∂2
y

)
v

where D and L are defined as before. We now seek separated solutions of the form

v(x, y, t) = v(x)eµt−iky

where µ ∈ C and k ∈ R. This leads one to the (ordinary differential equation) spectral

problem

∂x

(L+ k2
)
v = µDv

on L2(R). Our goal is to study the spectrum of the above (non-local) operator on L2(R)

near the origin (µ, k) = (0, 0). As before, the spectrum is purely continuous and consists
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of piecewise smooth arcs. In particular, for a given k ∈ R, µ ∈ spec
(D−1∂x

(L+ k2
))

if and only if there exists a λ ∈ S1 such that

D(µ, k, λ) = det (M(µ, k)− λI) = 0

where M(µ, k) is the monodromy map corresponding to the first order system

Yx = H(x, µ, k)Y, Y (0, µ, k) = I, (5.25)

where

H(x, µ, k) =




0 1 0

0 0 1

−1
c (µ + f ′′(u)ux) 1

c

(
c− 1 + k2 − f ′(u)

)
0




.

We now state our main technical lemma for this section.

Lemma 23. The equation D(µ, k, 1) = 0 has the following local normal form in a

neighborhood of the origin (µ, k) = (0, 0):

−µ3

2
{T,M,P}a,E,c + 2µk2{T, M}a,E

∫ T

0
u2

xdx +O(4) = 0.

Proof. This proof is essentially the same as given in chapter 4. By Theorem 18, we

need only compute the O(µk2) term in the above expansion. Let W(x, µ, k) be a

matrix solution of (5.25) such that

W(x, 0, 0) =




cux cua cuE

cuxx cuax cuEx

cuxxx cuaxx cuExx




.

The goal is to treat W(x, µ, k) as a small perturbation of W (x, 0, 0) for |(µ, k)|C×R ¿ 1.

Following the proof of Theorem 18 we define δ W(µ, k) = W(x, µ, k)|Tx=0 and notice

that by the form of δ W(µ, 0) we need only compute the k2 variation of the first column
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of W (x, 0, k). Using the variation of parameters formula (5.20) we have

W(T, 0, 0)
∫ T

0
W(z, 0, 0)−1




0

0

uxx(z)




dz =




c∂u−
∂E

∫ T
0 u2

xdx

∗
(c− 1− f ′(u−)) ∂u−

∂E

∫ T
0 u2

xdx




,

where the term ∗ is can be explicitly computed, but is not necessary at this order in

the perturbation argument. Therefore, a straightforward calculation gives

1
µk2

det (δ W(µ, k))
∣∣
(µ,k)=(0,0)

= −c{T, M}a,E

∫ T

0
u2

xdx.

Since det (W(x, 0, 0)) = −c, this completes the proof.

Lemma 23 readily yields a necessary condition for the underlying (gBBM) periodic

traveling wave u(x; a,E, c) to exhibit a modulational transverse instability in the ZK-

gBBM model.

Theorem 21. If {T, M, P}a,E,c 6= 0, then the spectrally stable periodic (gBBM) travel-

ing wave u(x; a,E, c) is spectrally unstable to long-wavelength transverse perturbations

in the ZK-gBBM model if {T, M}a,E > 0.

Proof. By Lemma 23, there are three periodic eigenvalues in a neighborhood of the

origin which are given by µ0 = o(k) and

µ± = ±|k|
√

4{T, M}a,E

∫ T
0 u2

xdx

{T, M, P}a,E,c
+ o(k)

Since u(x; a,E, c) was assumed to be a spectrally stable solution of (5.1), we know from

Theorem 19 that {T, M,P}a,E,c > 0 and hence there will be two (non-zero) periodic

eigenvalues off the imaginary axis in the neighborhood of the origin if {T, M}a,E > 0.

Notice that since {T, M}a,E = M2
E −TEMa, it follows that TEMa < 0 is a sufficient

condition for u to be spectrally unstable to such long-wavelength transverse perturba-

tions in the ZK-gBBM model. By our analysis in Section 4 it follows that for power-law
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non-linearities, periodic traveling wave solutions of (5.1) sufficiently close to the homo-

clinic orbit are transversely unstable in the ZK-gBBM model. Moreover, we have the

following stronger result in the case of the BBM equation

ut − uxxt + ux + uux = 0 (5.26)

Theorem 22. Let u(x; a0, E0, c0) be a spectrally stable periodic traveling wave solution

of the BBM equation (5.26). Then u is transversely unstable as a solution of the ZK-

gBBM equation if {T, M, P}a,E,c is non-zero at (a0, E0, c0).

Indeed, this holds by noticing that equation (5.26) is Galilean invariant, and hence

the proof of Lemma 17 implies3 that Ma < 0 for all non-equilibrium point solutions.

5.7 Stability Analysis of the Generalized Camassa-Holm Equation

We now briefly explain how the methods of this paper can be applied to the Generalized

Camassa-Holm equation (5.2). As mentioned in the introduction, this equation admits

a four parameter family of traveling wave solutions of the form u(x, t) = u(x−ct), which

are stationary solutions of the equation

ut − uxxt = 2uxuxx + (u− c)uxxx − (f(u)/2)x + (c− k)ux. (5.27)

Searching for stationary solutions of (5.27) leads to the traveling wave ordinary differ-

ential equation

(2ux − c)uxx + uuxxx − (f(u)/2)x + (c− k)ux = 0. (5.28)

3The only difference is that we can’t scale out the wave speed parameter c. However, since we have
the requirement that c > 1 the proof still holds verbatim.
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This equation can easily be integrated to quadrature, and is seen to satisfy the relations

1
2
u2

x + uuxx − 1
2
f(u)− (k − c)u− cuxx =

a

2
(5.29)

(c− u)u2
x = E − F (u)− (k − c)u2 − au (5.30)

In order to avoid technical issues, we assume we can choose (a, E, c) such that u(x; a,E, c)

is a periodic solution of (5.30) satisfying ‖u‖L∞(R) < c. Defining the effective potential

to be

V (u; a, c) = F (u) + (k − c)u2 + au

it follows that (5.30) can be rewritten as (c− u)u2
x = E − V (u; a, c).

Linearizing (5.27) about the stationary periodic solution u and taking the Laplace

transform in time leads to a spectral problem of the form ∂xKv = µDv considered on

L2(R), where

K = uxx + ∂x (u− c) ∂x − 1
2
f ′(u)− (k − c), and D = 1− ∂2

x.

As before, the L2(R) spectrum of the operator A = D−1∂xK is purely continuous and

consists of piecewise smooth arcs. Moreover, µ ∈ spec(A) if and only if there exists a

λ ∈ S1 such that

D(µ, λ) = det (M(µ)− λI) = 0,

where M(µ) is the corresponding monodromy operator associated to the first order

system

Y ′ = H(x, µ)Y, Y (0, µ) = I

where the matrix H(x, µ) can be determined through the usual procedure. As before,

the vector valued functions

Y1(x) =




ux

uxx

uxxx




, Y2(x) =




ua

uax

uaxx




, Y3(x) =




uE

uEx

uExx
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satisfy Y ′ = H(x, 0)Y , where we have suppressed the dependence on (x; a,E, c), and

the vector Y4(x) = [uc, ucx, ucxx]t solves the inhomogeneous problem

Y ′ = H(x, 0)Y + W

where W = [0, 0,−(c − u)−1Dux]t. A straight forward calculation in the spirit of that

in section 3.1 implies that

M(0) ∼




1 0 0

0 1 σ

0 0 1




for some σ which vanishes if and only if Da,ET vanishes. Thus, the equation D(µ, λ)

has an expansion as in (5.14) and, in particular we see that Dµ(0, 1) = 0. Moreover,

using the fact that D and K are self adjoint, we know that M(µ) ∼ M(−µ)−1. Thus,

we immediately have the following lemma which is the analogue of Lemma 19 for the

generalized Camassa-Holm equation.

Lemma 24. If Dµµµ(0, 1) 6= 0, the equation D(µ, eiκ) = 0 has the following normal

form in a neighborhood of (µ, κ) = (0, 0):

−(iκ)3 + (iκ)2µω′(0) +
iµ2κ

2
(
tr(Mµµ(0))− ω′(0)2

)
+

µ3

6
Dµµµ(0, 1) +O(4) = 0,

where ω(µ) =
∫ T
0 tr (H(x, µ)) dx and O(4) represents terms of order four and higher in

the variables κ and µ. In particular, there are three branches spectrum bifurcating from

the µ = 0 state which are analytic functions of κ in a neighborhood of the origin.

Proof. As in the proof of Lemma 19, we begin by defining a function b in a neighborhood

of µ = 0 such that

det
(
M(µ)− eiκI

)
= −η3 + a(µ)η2 + b(µ)η + D(µ, 1)

where a(µ) = tr(M(µ)) and η = eiκ−1. Since the spectral problemAv = µv is invariant

under the transformation (x, µ) → (−x,−µ), it follows that M(µ) ∼ M(−µ)−1. As
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a consequence, we see that Dµµ(0, 1) = 0 and hence D(µ, 1) = O(|µ|3) near µ = 0.

Moreover, defining ω(µ) =
∫ T
0 tr (H(x, µ)) dx we see that

e−ω(µ)D(µ, λ) = − (λ− 1)3 − (a(−µ)− 3) λ (λ− 1)2

+ b(−µ)λ2 (λ− 1)− λ3D(−µ, 1)

This immediately implies the relations





e−ω(µ)a(µ) = 2a(−µ)− b(−µ)− 3, and

−e−ω(µ) = −a(−µ) + b(−µ)−D(−µ, 1) + 2.

Since ω(0) = 0, ω′(0) 6= 0, and ∂k
µω(µ)|µ=0 for k ≥ 2, it follows as before that b′(0) = 0,

a′(0) = ω′(0), and b′′(0) = tr(Mµµ(0))− ω′(0)2.

Therefore, by defining the variable y = iµ
κ , it follows that the equation D(µ, eiκ) = 0

can be written as

1 + yω′(0)− y2

2
(
tr(Mµµ(0))− ω′(0)2

)
+

y3

6
Dµµµ(0, 1) + κE(κ, y)

where E(κ, y) is continuous in a neighborhood of the origin. It follows that the discrimi-

nant of this polynomial determines the local structure of the spectrum in a neighborhood

of the origin, just as in Theorem 17. By using variation of parameters, we can deter-

mine closed form expressions for the quantities tr(Mµµ(0)) and Dµµµ(0, 1) and thus

have a modulational instability theory for the generalize Camassa-Holm equation in

spirit of that for the generalized Benjamin-Bona-Mahony equation and the generalized

Korteweg-de Vries equation from chapter 2.
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APPENDIX

In this appendix, we review the constructions of the Newton diagrams used throughout

this text. This construction is quite general, and while equivalent to the method of

dominant balance introduced in most asymptotic methods courses, we believe this to

be somewhat more systematic. For details see the book of Baumgartel[6] or Hilton[37].

To begin, suppose we have a function of two complex variables of the form

p(λ, z) = a0(z)λn + a1(z)λn−1 + a2(z)λn−2 + ... + an−1(z)λ + an(z) (.1)

where the functions aj(z) are analytic at z = 0. Moreover, we assume that a0(0) 6= 0

and aj(0) = 0 for j = 1, 2, ..., n so that λ = 0 is an n-fold root of the polynomial p(λ, 0).

Our goal is to study the roots of the equation p(λ, z) = 0 in a neighborhood of (0, 0) and

to understand the possible bifurcations of the n-roots from the (λ, z) = (0, 0) state1.

By the analyticity of the aj in a neighborhood of z = 0, we can find non-zero constants

bj ∈ R and βj ∈ N ∪ {0} such that the expansions

aj(z) = bjz
βj + o

(
zβj

)
(.2)

holds for |z| ¿ 1 for each j = 0, 1, ..., n. In particular, notice our above assumptions

force β0 = 0 and βj ≥ 1 for j = 1, 2, ..., n. We now make the ansatz

λ = εzα + o (zα) (.3)
1In this appendix, we restrict ourselves to determining the roots tofirst order only. Higher order

expansions can be dealt with in similar means: see the above references for more information.
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where ε is non-zero and α > 0. Substituting (.2) and (.3) into the equation p(λ, z) = 0

and grouping terms by powers of z, it is clear that we must require that the coefficients

of each power of z must vanish. In particular, the coefficient of the lowest power of z

must vanish. By the form of (.1), this lowest power of z must be among one of the

following terms:

nα, (n− 1)α + β1, (n− 2)α + β2, . . . , βn. (.4)

Clearly, in order for the lowest of these terms to vanish, we must determine a value of

α such that at least one of the numbers in (.4) must occur twice. In order to determine

such values of α, notice that if two of the numbers from the list (.4) are equal, there

must be two distinct non-negative integers k1 and k2 such that

βk1 + (n− k1)α = βk2 + (n− k2)α,

which happens when

α =
βk1 − βk2

k1 − k2
.

To understand this condition, we consider the points Aj = (j, βj) on the non-negative

integer lattice Z+ × Z+. In the case when a particular aj vanishes identically, we omit

the corresponding point Aj . It follows that for two of the numbers in (.4) to occur

twice, we should choose α to be among the slopes between all pairs of points Ak1 and

Ak2 with k1, k2 = 0, 1, ..., n distinct.

However, recall that we want the two numbers in (.4) which coincide to be as small

as possible. This adds yet another constraint to α. In particular, suppose that the point

Ak3 lies below the line containing the points A0 and Ak2 . Then clearly

βk3 − β0

k3 − 0
<

βk2 − β0

k2 − 0
,

i.e. the line between A0 and Ak3 lies below the line between A0 and Ak2 . Thus, we see

that none of the points Ak should lie below the line which corresponds to the numbers

β0 +nα and βr +(r−j)α which coincide. By restarting the argument again at the point
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Figure .1: The Newton diagram corresponding to equation (.5). Notice that in this
picture, the point (2, 2) should technically not be listed, but its presence does not
change the lower convex hull.

Ar in place of A0, it follows that the straight lines with admissible slopes α we should

consider are those which form the lower convex hull of the points Aj for j = 0, 1, ..., n.

For each such α, we have at least one solution of the form (.3). As a matter of fact, the

number of solutions of form (.3) for a particular admissible α equals the length of the

projection of the line of slope α from the Newton diagram onto the vertical axis, i.e.

its rise in height. Moreover, the equation expressing the vanishing of the power of z in

(.1) of smallest power yields a polynomial equation which determines the coefficients ε

in (.3).

As an elementary example, consider the equation

5z3 − (z + 2z3)λ + zλ2 + λ3 = 0. (.5)

Clearly, when z = 0 the point λ = 0 is root of algebraic multiplicity three. To determine

the manner in which these roots bifurcate for small |z|, we use the above construction.

From the corresponding Newton diagram, see Figure , it follows that there are two

admissible α’s for this problem: α = 1
2 and α = 2. The slope α = 1

2 corresponds to the

points (0, 0) and (2, 1) on the Newton diagram, which from the specific form of the left
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hand side of (.5) corresponds to the equation

λ3 − zλ = 0.

Making the substitution λ = εz1/2 + o(z1/2), as motivated by the above analysis, yields

the equation

z3/2 (1− ε) = 0

and hence one solution of (.5) is of the form λ = z1/2 + o(z1/2). Similarly, the slope

α = 2 corresponds to the equation

−zλ + 5z3 = 0

Making the substitution λ = εz2 + o(z2) yields the equation

z3
(−1 + 5ε2

)
= 0

from which we conclude there are two roots of (.5) near the origin of the form

λ± = ± z2

√
5

+ o(z2).

Notice that if the term in (.5) corresponding to the point (2, 2) in the Newton diagram

vanished, then there would be only one admissible value of α: namely α = 1. It follows

that three roots bifurcate from the origin with expansions λj = ajz + o(z), where the

coefficients aj are determined by the roots of a cubic polynomial. This is the case which

occurs in our analysis throughout this thesis.
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