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NONLINEAR STABILITY OF PERIODIC TRAVELING WAVE
SOLUTIONS OF THE GENERALIZED KORTEWEG–DE VRIES
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Abstract. In this paper, we study the orbital stability for a four-parameter family of periodic
stationary traveling wave solutions to the generalized Korteweg–de Vries equation ut = uxxx+f(u)x.
In particular, we derive sufficient conditions for such a solution to be orbitally stable in terms of the
Hessian of the classical action of the corresponding traveling wave ordinary differential equation
restricted to the manifold of periodic traveling wave solutions. We show this condition is equivalent
to the solution being spectrally stable with respect to perturbations of the same period in the case
when f(u) = u2 (the Korteweg–de Vries equation) and in neighborhoods of the homoclinic and
equilibrium solutions if f(u) = up+1 for some p ≥ 1.
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1. Introduction. This paper concerns the stability analysis of periodic traveling
wave solutions of the generalized Korteweg–de Vries (gKdV) equation

(1.1) ut = uxxx + f(u)x,

where f is a sufficiently smooth nonlinearity satisfying certain convexity assumptions.
Probably the most famous equation among this family is given by f(u) = u2, in which
case (1.1) corresponds to the Korteweg–de Vries (KdV) equation. The KdV serves
as an approximate description of small amplitude waves propagating in a weakly
dispersive media. Other choices of the nonlinearity f arise in various applications,
such as internal waves and plasmas. Thus, to ensure general application we find it
beneficial to consider general nonlinearities in (1.1).

It is well known that (1.1) admits traveling wave solutions of the form

(1.2) u(x, t) = uc(x + ct), x ∈ R, t ∈ R,

for wave speeds c > 0. Historically, there has been much interest in the stability of
traveling solitary waves of the form (1.2) where the profile uc decays exponentially
to zero as its argument becomes unbounded. Such waves were initially discovered by
Russell in the case of the KdV where the traveling wave is termed a soliton. While
(1.1) does not in general possess exact “soliton” solutions, which require complete in-
tegrability of the partial differential equation (PDE), exponentially decaying traveling
wave solutions still exist. Moreover, the stability of such solitary waves is well un-
derstood and dates back to the pioneering work of Benjamin (1972), which was then
further developed by Bona (1975), Grillakis (1990), Grillakis, Shatah, and Strauss
(1987), Bona, Souganidis, and Strauss (1987), Pego and Weinstein (1994, 1992), We-
instein (1985, 1987), and many others. In this theory, it is shown that traveling
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solitary waves of (1.1) are orbitally stable if the solitary wave stability index

(1.3)
∂

∂c

∫ ∞

−∞
u2c dx

is positive, and is orbitally unstable if this index is negative. In the case where (1.1)
has a power-law nonlinearity f(u) = up+1, the sign of this stability index is positive
if p < 4 and is negative if p > 4. Moreover, in the work of Pego and Weinstein (1994,
1992) it was shown that the mechanism for this instability is as follows: linearizing
the traveling wave PDE

(1.4) ut = uxxx + f(u)x − cux,

which is satisfied by the traveling solitary wave profile, about the solution uc and
taking the Fourier transform in time leads to a spectral problem of the form ∂xL[uc]v =
μv considered on the real Hilbert space L2(R), where L[uc] is a second order self-
adjoint differential operator with asymptotically constant coefficients. The authors
then make a detailed study of the Evans function D(μ), which is an analytic function
such that if ψ is a solution of (1.4) satisfying ψ(x) ∼ eωx as x → ∞, then ψ(x) ∼
D(μ)eωx as x → −∞: in essence, D(μ) plays the role of a transmission coefficient
familiar from quantum scattering theory. This approach is motivated by the fact
that for Re(μ) > 0 the vanishing of D(μ) implies that μ is an L2 eigenvalue of the
linearized operator ∂xL[uc] and conversely. Pego and Weinstein were able to use this
machinery to prove that the Evans function satisfies limμ→+∞ sign(D(μ)) > 0 as well
as the asymptotic relation

D(μ) = C1

(
∂

∂c

∫ ∞

−∞
uc(x)

2dx

)
μ2 + o(|μ|2)

in a neighborhood of μ = 0 for some positive constant C1. Thus, if (1.3) is negative,
it follows by the continuity of D(μ) for μ ∈ R+ that D(μ) < 0 for small positive μ,
and hence D(μ) must have a positive root, thus proving exponential instability of the
underlying traveling solitary wave in this case.

In this paper, however, we are concerned with traveling wave solutions of (1.1) of
the form (1.2), where this time we require the profile uc to be a periodic function of its
argument. In contrast to the traveling solitary wave theory, relatively little is known
concerning the stability of periodic traveling waves of nonlinear dispersive equations
such as the gKdV. Existing results usually come in two types: spectral stability with
respect to localized or bounded perturbations, and orbital (nonlinear) stability with
respect to periodic perturbations. Most spectral stability results seem to rely on a
Floquet–Bloch decomposition of the linearized operator and a detailed analysis of the
resulting family of spectral problems, or else perturbation techniques which analyze
modulational instability (spectrum near the origin).

There is a fairly substantial amount of literature devoted to the stability of the
cnoidal solutions of the KdV,

(1.5) u(x, t) = u0 + 12k2κ2 cn2
(
κ
(
x− x0 +

(
8k2κ2 − 4κ2 + u0

)
t
)
, k
)
,

where k ∈ [0, 1) and κ, x0, and u0 are real constants. Such cnoidal waves represent
all stationary periodic traveling wave solutions of the KdV and have been studied by
McKean (1977) and more recently by Angulo, Bona, and Scialom (2006), Pava and
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Natali (2008), and Bottman and Deconinck (2008). The results of McKean (1977) use
the complete integrability of the KdV to study the periodic initial value problem in
order to show nonlinear stability of the cnoidal solutions to perturbations of the same
period. Also using the machinery of complete integrability, Bottman and Deconinck
(2008) explicitly compute the spectrum of the linearized operator about the cnoidal
wave on the real Hilbert space L2(R) and show this to be confined to the imaginary
axis. In particular, it follows that cnoidal solutions of the KdV are spectrally stable
to perturbations of the same period and, more generally, perturbations with periods
which are integer multiples of the period of the cnoidal wave. In this paper, we
will use the governing PDE, as opposed to properties of the explicit cnoidal wave
solution, to upgrade the spectral stability result of Bottman and Deconinck to orbital
stability with respect to perturbations of the same period. Finally, Pava and Natali
(2008) use a modification of the energy functional techniques of Bona, Souganidis,
and Strauss (1987) and Grillakis, Shatah, and Strauss (1987) to study the nonlinear
stability problem for periodic solutions of the gKdV. In fact, the authors study a
more general version of the governing PDE which we will not consider here. There
are very interesting and subtle connections concerning the present work with that of
Pava and Natali (2008) which will be made throughout the text. In particular, we will
explain how the conditions (P0)− (P3) for orbital stability given by Pava and Natali
(2008) can be understood from a geometric viewpoint and how these conditions can
be extended to the consideration of all periodic traveling waves of the gKdV (not just
the “zero mass” solutions).

Returning to the generalized KdV equation (1.1), spectral stability results have
recently been obtained by Hărăguş and Kapitula (2008) as well as by Bronski and
Johnson (2008). In the former paper, the spectral stability of small amplitude periodic
traveling wave solutions of (1.1) with f(u) = up+1 was studied. By using a Floquet–
Bloch decomposition of the linearized spectral problem, the authors found that such
solutions1 are spectrally stable if p ∈ [1, 2) and exhibit a modulational instability if
p > 2. In particular, they found that such solutions are always spectrally stable to
perturbations of the same period: in section 5, we will verify and extend this result
through the use of the periodic Evans function. In the work of Bronski and Johnson
(2008), a modulational instability analysis of periodic traveling wave solutions of (1.1)
was conducted using Floquet theory and developing a perturbation theory appropriate
to the Jordan structure of the period map at the origin. As a byproduct of their
analysis, a sufficient condition for exponential instability of the underlying periodic
traveling wave with respect to periodic perturbations was obtained in terms of the
conserved quantities of the gKdV flow. In particular, a stability index was derived
in a manner quite similar to the solitary wave theory outlined above such that the
negativity of this index implies exponential instability of the periodic traveling wave
with respect to perturbations of the same period. The relevant results of this analysis
can be found in section 3. It seems natural to consider the role this periodic instability
index derived in Bronski and Johnson (2008) plays in the nonlinear stability of the
periodic traveling wave. As mentioned above, the analogue of this index controls the
nonlinear stability in the solitary wave context. While we show this true in certain
cases in sections 5 and 6, this seems not to be the case in general.

Before we state our main theorem, a little notational background is necessary:
for more information see sections 2 and 4. The periodic traveling wave solutions of

1In the work of Hărăguş and Kapitula (2008), they consider only small amplitude periodic trav-
eling waves with the integration parameter a (see section 2 for definition) being small.
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the gKdV (1.1) form a four-parameter family of solutions of the traveling wave ODE

uxxx + f(u)x − cux = 0.

One of the defining parameters corresponds to the translation invariance and can be
modded out, leaving us with a three-parameter manifold of periodic traveling wave
solutions which we define by the parameters (a,E, c) ∈ Ω ⊂ R

3, where c is the wave-
speed and a and E arise as constants of integration reducing the traveling wave ODE
to quadrature:

u2x
2

= E −
∫ u

u(0)

f(s)ds+ au+
c

2
u2.

Notice not every choice of (a,E, c) ∈ R3 gives rise to a periodic solution of the traveling
wave ODE: the set of all (a,E, c) for which the traveling wave ODE admits periodic
solutions is denoted by Ω ⊂ R3 (more will be said on this in the next section). Given
such a periodic solution u(x) = u(x; a,E, c) we denote its period by T , its mass

by M :=
∫ T

0
u dx, and its momentum by P :=

∫ T

0
u2dx, where we consider these

as functions of Ω. Moreover, we define the classical action of the traveling wave

ODE (in the sense of action angle variables) to be K :=
∫ T

0
u2xdx. As we will see

in the next section, K serves as a useful generating function for the quantities T ,
M , and P of the underlying wave. These quantities can be shown to be C1 in the
parameters (a,E, c) ∈ Ω, and hence we can speak of their partial derivatives (denoted
by Ta := ∂

∂aT (a,E, c), etc.) and gradients. Moreover, we suppose there is a real
Hilbert space X such that the Cauchy problem for (1.1) is globally well-posed. With
this setup in mind, we now state our main theorem.

Theorem 1.1. Let u(x + c0t) be a periodic traveling wave solution of (1.1),
corresponding to an (a0, E0, c0) ∈ Ω. Moreover, assume the principle minors of the
matrix

(1.6) D2
E,a,cK(a,E, c) =

⎛⎝ TE Ta Tc
ME Ma Mc

PE Pa Pc

⎞⎠
satisfy d1 = TE > 0, d2 = TEMa −METa < 0, and d3 = det(D2

E,a,cK(a,E, c)) < 0
at (a0, E0, c0). Then there exist C0 > 0 and ε > 0 such that for all φ0 ∈ X with
‖φ0‖X < ε, the solution φ(x, t) of (1.1) with initial data φ(x, 0) = u(x)+φ(x) satisfies

inf
ξ∈R

‖φ(·, t)− u(x+ c0t+ ξ)‖X ≤ C0‖φ0‖X

for all t > 0.
The main point in Theorem 1.1 is that the orbital stability of a given periodic

traveling wave solution of (1.1) can be determined in terms of the solution itself.
Moreover, this yields a geometric characterization of the orbital stability problem for
such solutions. Take for example the KdV: in this case we will show that, assuming
a particular nondegeneracy condition holds, orbital stability occurs if and only if the
underlying solution is spectrally stable to such perturbations. To put this in geometric
terms, we will show that the periodic traveling waves have a natural parametrization
in terms of three constants arising from the governing ODE. One can then consider the
map from this space of constants to the conserved quantities of the gKdV flow, namely,
the mass, momentum, and Hamiltonian. If this map is invertible at the corresponding
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solution, then the orbital stability will be determined completely in terms of the
Jacobian of this map, which is given precisely by the matrix D2

a,E,cK(a,E, c). More
will be said on this in later sections.

Remark 1. As we will see in section 5, the condition TE > 0 is satisfied for a
large class of nonlinearities by a result of Schaaf (1985). Thus, in such cases one
must determine only the sign of d2 and d3. Moreover, we will see that TE > 0 is
equivalent with the conditions (P0)− (P2) presented in Pava and Natali (2008). Also,
the notation used for the matrix (1.6) is meant to be suggestive: it is the Hessian
matrix of the classical action of the ODE governing traveling wave solutions of (1.1).
See section 2 for more details.

The outline for this paper is as follows. Section 2 will be devoted to a study of
the basic properties of the periodic traveling wave solution of (1.1). In section 3, we
will recall the recent results of Bronski and Johnson (2008) concerning the spectral
stability of periodic traveling wave solutions of (1.1) with respect to perturbations of
the same period. The resulting instability index will play an important role through-
out the rest of the paper. Section 4 is devoted to the proof of Theorem 1.1. Finally,
two applications of our theory are described in sections 5 and 6: in section 5, we study
the orbital stability of periodic traveling wave solutions of (1.1) in neighborhoods of
the homoclinic and equilibrium solutions in the case of a power-law nonlinearity. In
section 6, we apply our theory to the KdV and show that periodic traveling wave
solutions are orbitally stable if and only if they are spectrally stable to perturbations
of the same period as the underlying wave.

2. Properties of the stationary periodic traveling waves. In this section,
we recall the basic properties of the periodic traveling wave solutions of (1.1). For
each number c > 0, a stationary traveling wave solution of (1.1) with wave speed c is
a solution of the traveling wave ODE

(2.1) uxxx + f(u)x − cux = 0;

i.e., they are solutions of (1.1) which are stationary in the moving coordinate frame
defined by x+ ct. Clearly, such solutions are reducible to quadrature and satisfy

uxx + f(u)− cu = a,(2.2)

1

2
u2x + F (u)− c

2
u2 − au = E,(2.3)

where a and E are real constants of integration and F satisfies F ′ = f , F (0) = 0. In
order to ensure the existence of periodic orbits of (2.1), we require that the effective
potential

V (u; a, c) = F (u)− c

2
u2 − au

is of class C2(R) and has a local minimum. Notice this places a restriction on the
allowable parameter regime for our problem. This motivates the following definition.

Definition 1. We define Ω ⊂ R3 to be the open set consisting of all triples
(a,E, c) such that (2.1) has at least one periodic solution.

When (a,E, c) ∈ Ω, we use the notation u(x; a,E, c) to denote a particular pe-
riodic solution;2 see Figure 2.1. Notice that ∂Ω corresponds to the solitary wave
solutions of the traveling wave ODE.

2In the case where more than one such solution exists for a particular (a, E, c), we can distinguish
them by their initial values.
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Fig. 2.1. (Left) A plot of the effective potential energy V (x; 0.1, 1) for the mKdV equation
(f(u) = u2), as well as three energy levels E1 = −0.32, E2 = −0.05, and E3 = 0.1. (Right) Plots
in phase space of the solutions u(x; 0.1, Ej , 1) corresponding to the three energy levels on the left.
Notice that we refer to those solutions corresponding to energy levels E1 and E2 as dnoidal type since
they are bounded by a homoclinic orbit in phase space (given by the thin dashed line). Moreover,
notice that E2 corresponds to two distinct periodic traveling wave solutions; however, these can be
clearly distinguished by their initial values which we have chosen to mod out in our theory.

Remark 2. The theory presented throughout will apply to all (a,E, c) ∈ Ω. How-
ever, our applications in section 5 will be restricted to the case of dnoidal type solu-
tions, i.e., those solutions which are bounded by a homoclinic or heteroclinic orbit in
phase space; such orbits are guaranteed to exist by the requirement that V have a
local minima. There are a number of reasons for this restriction: first and foremost is
that a result of Schaaf (1985) allows us to identify the sign of the quantity TE from
Theorem 1.1 for a wide class of such solutions; see Lemma 5.1. As we will see in the
next section, this information is vital in understanding the number of negative eigen-
values of the second variation of a particular nonlinear functional used throughout
this work; see Lemma 4.1 for more details.

Moreover, taking into account the translation invariance of (1.1), it follows that
for each (a,E, c) ∈ Ω we can construct a one-parameter family of periodic traveling
wave solutions of (1.1), namely,

uξ(x, t) = u(x+ ct+ ξ; a,E, c),

where ξ ∈ R. Thus, the periodic traveling waves of (1.1) constitute a four-dimensional
manifold of solutions. However, outside of the null-direction of the linearized operator
which this generates, the added constant of integration does not play an important
role in our theory. In particular, we can mod out the continuous symmetry of (1.1)
by requiring all periodic traveling wave solutions satisfy the conditions ux(0) = 0 and
V ′(u(0)) < 0. As a result, each periodic solution of (2.1) is an even function of the
variable x with a local maximum at x = 0.

Remark 3. Notice that a and E are constants of integration arising from inte-
grating (2.1) to quadrature. Moreover, the classical solitary waves corresponding to
solutions of (1.1) satisfying limx→±∞ u(x) = 0 correspond to a = E = 0, and hence
constitute a codimension two subset of the traveling wave solutions of (1.1). It seems
natural then to expect that the stability of periodic traveling waves will involve vari-
ations in these extra parameters, just as the solitary wave stability index involves
variations in the one (modulo translation) free parameter c.
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Throughout this paper, we will always assume that our periodic traveling waves
correspond to an (a,E, c) within the open region Ω and that the roots u± of E =
V (u; a, c) with V (u; a, c) < E for u ∈ (u−, u+) are simple. Moreover, we assume the
potential V does not have a local maximum in the open interval (u−, u+). It follows
that u± are C1 functions of a, E, and c on Ω, and that u(0) = u−. Moreover, given
(a,E, c) ∈ Ω, we define the period of the corresponding solution to be

(2.4) T = T (a,E, c) := 2

∫ u+

u−

du√
2 (E − V (u; a, c))

.

The above interval can be regularized at the square root branch points u−, u+, and
in particular we can differentiate the above relation with respect to the parameters
a, E, and c within the parameter regime Ω. Similarly, the mass, momentum, and
Hamiltonian of the traveling wave are given by

M(a,E, c) =

∫ T

0

u(x) dx = 2

∫ u+

u−

u du√
2 (E − V (u; a, c))

,(2.5)

P (a,E, c) =

∫ T

0

u2(x) dx = 2

∫ u+

u−

u2 du√
2 (E − V (u; a, c))

,(2.6)

H(a,E, c) =

∫ T

0

(
u2x
2

− F (u)

)
dx = 2

∫ u+

u−

E − V (u; a, c)− F (u)√
2 (E − V (u; a, c))

du.(2.7)

Notice that these integrals can also be regularized at the branch points u± and rep-
resent conserved quantities of the gKdV flow restricted to the manifold of periodic
traveling wave solutions. In particular, one can differentiate the above expressions
with respect to the parameters (a,E, c).

The gradients of the above conserved quantities will play a large role throughout
this paper. Notice by the Hamiltonian structure of (2.1), the derivatives of the pe-
riod, mass, and momentum restricted to a periodic traveling wave u(·; a,E, c) with
(a,E, c) ∈ Ω satisfy several useful identities. In particular, if we define the classical
action

K =

∮
ux du =

∫ T

0

u2x dx = 2

∫ u+

u−

√
2(E − V (u; a, c)) du

(which is not itself conserved), then this quantity satisfies the following relation:

∇a,E,cK(a,E, c) =

〈
M(a,E, c), T (a,E, c),

1

2
P (a,E, c)

〉
,(2.8)

where ∇a,E,c = (∂a, ∂E , ∂c). Using the fact that T,M,P, and H are C1 functions of
parameters (a,E, c), the above implies the following relationship between the gradients
of the conserved quantities of the gKdV:

(2.9) E∇a,E,cT + a∇a,E,cM +
c

2
∇a,E,cP +∇a,E,cH = 0.

See the appendix of Bronski and Johnson (2008) for details of this calculation. The
subsequent theory is developed most naturally in terms of the quantities T , M , and
P . However, it is possible to restate our results in terms of M , P , and H using the
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identity (2.9). This is desirable since these have a natural interpretation as conserved
quantities of the PDE (1.1).

We now discuss the parametrization of the periodic solutions of (2.1) in more
detail. A major technical necessity throughout this paper is that the constants of mo-
tion for the PDE flow defined by (1.1) provide (at least locally) a good parametriza-
tion for the periodic traveling wave solutions. In particular, we assume for a given
(a,E, c) ∈ Ω the conserved quantities (H,M,P ) are good local coordinates for
the periodic traveling waves near (a,E, c). More precisely, we assume the map
(a,E, c) → (H(a,E, c),M(a,E, c), P (a,E, c)) has a unique C1 inverse in a neigh-
borhood of the point (a,E, c). If we adopt the notation

{f, g}x,y =

∣∣∣∣ fx gx
fy gy

∣∣∣∣
for 2 × 2 Jacobians, and {f, g, h}x,y,z for the analogous 3 × 3 Jacobian, it follows
this is possible exactly when {H,M,P}a,E,c 
= 0, which is equivalent to the Jacobian
{T,M,P}a,E,c being nonzero if E 
= 0 by (2.9). Also, we will need to know that two
of the quantities T , M , and P provide a local parametrization for the traveling waves
with fixed wave speed. By reasoning as above, this happens exactly when the matrix(

Ta Ma Pa

TE ME PE

)
has full rank. A sufficient requirement3 is thus {T,M}a,E 
= 0.

3. Spectral stability analysis. In this section, we recall the relevant results
of Bronski and Johnson (2008) on the spectral stability of periodic traveling wave
solutions of the gKdV. Suppose that u = u( · ; a,E, c) ∈ C3(R;R) is a T -periodic
solution of (1.4) with (a,E, c) ∈ Ω. Linearizing (1.1) about this solution and taking
the Laplace transform in time leads to the spectral problem

(3.1) ∂xL[u]v = μv

considered on L2(R;R), where L[u] := −∂2x − f ′(u) + c is a closed symmetric linear
operator with T -periodic coefficients. In particular, since u is bounded, it follows that
L[u] is in fact a self-adjoint operator on L2(R) with densely defined domain C∞(R).
Notice that considering (3.1) on L2(R) corresponds to considering the spectral stability
with respect to localized perturbations,4 and as a result the spectrum spec (∂xL[u])
is purely continuous. Moreover, the Hamiltonian nature of (3.1) implies that such a
solution is spectrally stable if and only if spec (∂xL[u]) ⊂ Ri.

In order to study the spectrum of the operator ∂xL[u] we note that (3.1) can be
written as a first order system of the form Φx = H(x, μ)Φ. We define the monodromy
matrix M(μ) to be the corresponding matrix solution with initial condition Φ(0) = I,
where I is the 3 × 3 identity matrix. It follows that μ ∈ spec (∂xL[u]) if and only if
there exists a nontrivial bounded function ψ such that ∂xL[u]ψ = μψ or, equivalently,
if there exists a λ ∈ C with |λ| = 1 such that the periodic Evans function

D(μ, λ) = det (M(μ)− λI)

3Although this is not necessary, we find this condition is needed for the proof of Lemma 4.4.
Trivial modifications of the theory of section 3 are needed if {T,M}a,E = 0 but {T, P}a,E �= 0, but
we are unable to find such a modification for the orbital stability proof of section 4.

4One could also study the spectral stability with respect to uniformly bounded perturbations,
but by standard results in Floquet theory the resulting theories are equivalent.
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vanishes; see Gardner (1997). In particular, we see that D(μ, 1) detects spectra which
correspond to perturbations which are T -periodic. To study such instabilities, we
recall the following result.

Lemma 3.1. The function D(μ, 1) satisfies the following properties:
1. D(μ, 1) is an odd function of μ.
2. The limit limμ→∞ sign (D(μ, 1)) exists and is negative.
3. The asymptotic relation

D(μ, 1) = −1

2
{T,M,P}a,E,c μ

3 +O(|μ|4)

holds in a neighborhood of μ = 0.
For details of the proof, see Proposition 1, Lemma 1, and Theorem 3 of Bronski

and Johnson (2008). The main idea is that the integrable structure of the ODE
governing the traveling waves (2.1) immediately allows direct computation of the
tangent space of the manifold of traveling wave solutions at μ = 0. As such, the
calculation is undoubtedly related to the multisymplectic formalism of Bridges (1997).
It follows that if {T,M,P}a,E,c is negative, then the number of positive roots of
D(μ, 1) is odd and hence one has exponential instability of the underlying periodic
traveling wave. Moreover, we will show in Lemma 4.2 that TE > 0 implies L[u] has
exactly one negative eigenvalue. It follows that the linearized operator ∂xL[u] has
at most one unstable eigenvalue with positive real part, counting multiplicities (see,
for example, Theorem 3.1 of Pego and Weinstein (1992)). Since the spectrum of
∂xL[u] is symmetric about the real and imaginary axes, it follows that all unstable
periodic eigenvalues of the linearized operator must be real. This proves the following
extension of Corollary 1 in Bronski and Johnson (2008).

Theorem 3.2. Let u(x; a0, E0, c0) be a periodic traveling wave solution of (1.1)
with (a0, E0, c0) ∈ Ω. If TE is positive and {T,M,P}a,E,c is nonzero at (a0, E0, c0),
then the solution is spectrally stable to perturbations of the same period if and only if
{T,M,P}a,E,c is positive at (a0, E0, c0).

Notice that if TE < 0, the operator L[u] has two negative eigenvalues by Lemma
4.2 below. Thus, even if {T,M,P}a,E,c > 0 in this case, there is no way of proving
from these methods whether the number of periodic eigenvalues of ∂xL[u] with positive
real part is equal to zero or two. By drawing a direct analogy with the solitary wave
theory one would suspect if TE > 0, then such solutions of (1.1) are nonlinearly stable
if and only if {T,M,P}a,E,c is positive,5 i.e., if and only if it is spectrally stable to
perturbations of the same period. However, this seems not to be true in general: the
sign of the Jacobian {T,M}a,E also plays a role in the orbital stability analysis, even
though it does not seem to play into the periodic spectral stability theory at all.6 This
possibility of having spectrally stable solutions which are not orbitally stable stands
in stark contrast to the solitary wave theory for the gKdV.

4. Orbital stability. In this section, we prove our main theorem on the orbital
stability of periodic traveling wave solutions of (1.1). Throughout this section, we
assume we have a T -periodic traveling wave solution u(x; a0, E0, c0) of (1.1); i.e., we
assume u satisfies

(4.1)
1

2
u2x + F (u)− c0

2
u2 − a0u = E0,

5In sections 5 and 6, we study cases where this is indeed the case.
6One could suspect that {T,M}a,E changes sign only when {T,M, P}a,E,c does, but this is

shown not to be the case in Corollary 4.7 below.
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with (a0, E0, c0) ∈ Ω and T = T (a0, E0, c0). Moreover, we assume the nonlinearity f
present in (1.1) is such that the Cauchy problem for (1.4) is globally well-posed in a
real Hilbert space X of real valued T -periodic functions defined on R, which we equip
with the standard L2([0, T ]) inner product

〈g, h〉 :=
∫ T

0

g(x)h(x)dx

for all g, h ∈ X . Also, we identify the dual space X∗ through the usual pairing. In
particular, notice that L2([0, T ]) is required to be a subspace of X . For example, if
f(u) = u3/3, corresponding to the modified KdV equation, then the Cauchy problem
for (1.4) is globally well-posed in the space

Hs
per([0, T ];R) = {g ∈ Hs([0, T ];R) : g(x+ T ) = g(x) a.e.}

for all s ≥ 1
2 , where we identify the dual space with H−s

per([0, T ];R) through the usual
pairing (see Colliander et. al. (2003) for proof). Moreover, due to the structure of
the gKdV, we make the natural assumption that the evolution of (1.4) in the space
X is invariant under a one-parameter group of isometries G corresponding to spatial
translation. Thus, G can be identified with the real line R acting on the space X
through the unitary representation

(Rξg)(x) = g(x+ ξ)

for all g ∈ X and ξ ∈ G. Since the details of our proof work regardless of the form
of the nonlinearity f , we make the above additional assumptions on the nonlinearity
and make no other references to the exact structure of the space X or f .

In view of the symmetry group G, we now describe precisely what we mean by
orbital stability. We define the G-orbit generated by u to be

Ou := {Rξu : ξ ∈ G}.

Now, suppose we have initial data φ0 ∈ X which is close to the orbit Ou. By orbital
stability, we mean that if φ(·, t) ∈ X is the unique solution with initial data φ0,
then φ(·, t) is close to the orbit of u for all t > 0. More precisely, we introduce a
semidistance ρ defined on the space X by

ρ(g, h) = inf
ξ∈G

‖g −Rξh‖X

and use this to define an ε-neighborhood of the orbit Ou by

Uε := {φ ∈ X : ρ(u, φ) < ε}.

The main result of this section is the following restatement of Theorem 1.1.
Lemma 4.1. Let u(x) = u(x; a0, E0, c0) solve (4.1) with (a0, E0, c0) ∈ Ω, and sup-

pose the quantities TE, {T,M}a,E, and {T,M,P}a,E,c are all positive at (a0, E0, c0).
Then there exist positive constants C0, ε0 such that if φ0 ∈ X satisfies ρ(φ0, u) < ε
for some ε < ε0, then the solution φ(x, t) of (1.1) with initial data φ0 satisfies
ρ(φ(·, t), u) ≤ C0ε.

Remark 4. Notice that Theorem 3.2 implies a periodic solution u(x; a0, E0, c0)
of (2.1) is an exponentially unstable solution of (1.1) if {T,M,P}a,E,c is negative at
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(a0, E0, c0). Thus, the positivity of this Jacobian is a necessary condition for nonlinear
stability.

Also, it follows from (2.8) that the Hessian of the classical action K(a,E, c) can
be expressed as

D2
a,E,cK(a,E, c) =

⎛⎝ Ma ME Mc

Ta TE Tc
Pa PE Pc

⎞⎠ .

Lemma 4.1 thus states that if (a0, E0, c0) ∈ Ω, then a sufficient condition for orbital
stability is that D2

a,E,cK(a,E, c) be invertible with precisely one negative eigenvalue.
However, this is clearly not sufficient.

We now proceed with the proof of Lemma 4.1, which follows the general methods
of Bona, Souganidis, and Strauss (1987) and Grillakis, Shatah, and Strauss (1987).
We begin by defining the following functionals on the space X :

E(φ) :=
∫ T

0

(
1

2
φx(x)

2 − F (φ(x))

)
dx,

M(φ) :=

∫ T

0

φ(x) dx,

P(φ) :=
1

2

∫ T

0

φ(x)2dx.

These functionals represent conserved quantities of the flow generated by (1.1) and
correspond to the “energy,” “mass,” and “momentum,” respectively. In particular, if
φ(x, t) is a solution of (1.1) of period T , then the quantities E(φ(·, t)), M(φ(·, t)),
and P(φ(·, t)) are constants in time. Also, notice that E(u) = H(a0, E0, c0),
M(u) = M(a0, E0, c0), and P(u) = P (a0, E0, c0), where H , M , and P are defined in
(2.5)–(2.7).

Remark 5. Throughout the remainder of this paper, the symbols M and P will
denote the functionals M and P , respectively, restricted to the manifold of periodic
traveling wave solutions of (1.1) with (a,E, c) ∈ Ω.

It is easily verified that E , M, and P are smooth functionals on X , whose first
derivatives are smooth maps from X to X∗ defined by

E ′(φ) = −φxx − f(φ), M′(φ) = 1, P ′(φ) = φ.

If we now define an augmented energy functional on the space X by

(4.2) E0(φ) := E(φ) + c0P(φ) + a0M(φ) + E0T,

it follows from (4.1) that E0(u) = 0 and E ′
0(u) = 0. Hence, u is a critical point of the

functional E0.
Remark 6. Notice that the added factor of E0T on the right-hand side of (4.2) is

not technically needed for our calculation. However, we point out that if we (formally)
consider variations in E0 in the period, we obtain

∂

∂T
E0(φ)

∣∣
φ=u

=
1

2
u2x(T )− F (u(T )) + au(T ) + E +

〈
E ′
0(u),

∂u

∂T

〉
= 0
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since u2x(T ) = 2E − 2V (u(T ); a, c) = 0 and E ′
0(u) = 0. Hence, u is also (formally)

a critical point of the modified energy with respect to variations in the period, and
the energy level E0 can be considered as a Lagrange multiplier enforcing fixed period.
It would be very interesting to try to make this calculation rigorous and to see if
it allows one to extend orbital stability results to include perturbations with period
close to the period of the underlying wave; we will make no attempt at such a theory
here.

Remark 7. Calculations in a similar vein have been carried out recently by Pava
and Natali (2008), Angulo, Bona, and Scialom (2006), and Angulo (2007) in the case
where a = 0. After dropping the E0T factor (see Remark 6), such a periodic traveling
profile is a critical point of the energy functional

E(φ) + c0P(φ),

which is the same as that considered by Bona, Souganidis, and Strauss (1987) and
Grillakis, Shatah, and Strauss (1987) in the solitary wave theory. While this is always
done for the KdV (due to Galilean invariance), it is not possible for general non-
linearities without restricting your admissible class of traveling wave solutions, i.e.,
restricting Ω. Thus, when studying nonlinear stability in the periodic setting, the
augmented energy given in (4.2) is the appropriate functional to analyze.

To determine the nature of this critical point, we consider its second derivative
E ′′
0 , which is a smooth map from X to L(X,X∗) defined by

E ′′
0 (φ) = −φxx − f ′(φ) + c0.

This formula immediately follows by noticing that the second derivatives of the mass,
momentum, and energy functionals are smooth maps from X to L(X,X∗) given by

E ′′(φ) = −∂2x − f ′(φ), M′′(φ) = 0, P ′′(φ) = 1.

In particular, notice that the second derivative of the augmented energy functional E0
at the critical point u is precisely linear operator L[u] arising from linearizing (1.4)
with wave speed c0 about u. It follows from the comments in the previous section
that E ′′

0 (u) is a self-adjoint linear operator on L2
per([0, T ];R) with compact resolvent.

In order to classify u as a critical point of E0, we must understand the nature of the
spectrum of the second variation L[u]: in particular, we need to know the number of
negative eigenvalues. This is handled in the following lemma.

Lemma 4.2. The spectrum of the operator L[u] considered on the space
L2
per([0, T ]) satisfies the following trichotomy:

(i) If TE > 0, then L[u] has exactly one negative eigenvalue, a simple eigenvalue
at zero, and the rest of the spectrum is strictly positive and bounded away
from zero.

(ii) If TE = 0, then L[u] has exactly one negative eigenvalue, a double eigenvalue
at zero, and the rest of the spectrum is strictly positive and bounded away
from zero.

(iii) If TE < 0, then L[u] has exactly two negative eigenvalues, a simple eigenvalue
at zero, and the rest of the spectrum is strictly positive and bounded away from
zero.

Proof. The proof is essentially a consequence of the translation invariance of
(1.1) and the Sturm–Liouville oscillation theorem. Indeed, notice that for any ξ ∈ G
the function Rξu is a stationary solution of (2.2) with wave speed c0 and a = a0.
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Differentiating this relation with respect to ξ and evaluating at ξ = 0 implies that
L[u]ux = 0. Moreover, since u is radially increasing on [0, T ] from its local minimum
there, ux is periodic with the same period as u and hence ux ∈ L2

per([0, T ]). This
proves that zero is always a periodic eigenvalue of L[u] as claimed. To see there is
exactly one negative eigenvalue, notice that since u is T -periodic with precisely one
local critical point on (0, T ), its derivative ux must have precisely one sign change
over its period. By standard Sturm–Liouville theory applied to the periodic problem
(see Theorem 2.14 in Magnus and Winkler (1979)), it follows that zero must be either
the second or third7 eigenvalue of L[u] considered on the space L2

per([0, T ]). Our goal
is to show that it is the Jacobian TE which distinguishes between these cases.

Let m(μ) be the monodromy matrix corresponding to the second order linear
ODE L[u]v = μv. Here, we are considering L[u] as a formal operator without imposing
any boundary conditions. From Floquet theory, it is known that the L2(R) spectrum
of L[u] is characterized by the Floquet discriminant k(μ) := tr( m(μ)). In particular,
L[u]v = μv has a nontrivial bounded solution if and only if k(μ) is real and |k(μ)| ≤ 2.
As the function k(μ) is analytic, it follows that the L2(R) spectrum of L[u] must be
purely continuous, consisting of bands and gaps.8 The edges of the bands, given
by roots of the equation k(μ) = ±2, correspond to the periodic and antiperiodic
eigenvalues of L[u]. In particular, the solutions of the equation k(μ) = 2 are precisely
the eigenvalues of L[u] considered on L2

per([0, T ]). Since L[u]ux = 0 by the above
remarks, it follows that k(0) = 2, and hence we must determine if μ = 0 is the second
or third root of the equation k(μ) = 2. For this, it is enough to analyze the quantity
k′(0). Indeed, the role of this quantity in determining the structure of the spectrum
of L[u] is described by Figure 4.1 and its caption; for more information see the text of
Magnus and Winkler (1979). In particular, notice that μ = 0 is the second T -periodic
eigenvalue of L[u] if k′(0) ≥ 0, and is the third if k′(0) < 0.

We now wish to calculate the quantity k′(0) explicitly, showing in particular that
sign(k′(0)) = sign(TE). First, notice that the periodic traveling wave solutions of
(2.2) are invariant under changes in the energy parameter E associated with the
Hamiltonian ODE (2.1). As above, it follows that L[u]uE = 0. We can thus use ux
and uE as a basis to compute the matrix m(0). Differentiating the relation E =

V (u−; a, c) with respect to E and evaluating at (a0, E0, c0) gives
∂u−
∂E V ′(u−; a0, c0) =

1, and hence ∂u−
∂E is nonzero at (a0, E0, c0). Defining y1(x) = (du−

dE )−1uE and

y2(x) = − (V ′(u−; a0, c0))
−1
ux(x), it follows from direct calculation that

y1(0) = 1, y2(0) = 0,
y′1(0) = 0, y′2(0) = 1.

Calculating uE(T ) by the chain rule, we have

m(0) =

(
1 TE
0 1

)
,

where again we have used the fact that V ′(u−; a, c)
∂u−
∂E = 1. The result now follows by

some standard perturbation theory and messy algebra. In particular, using variation
of parameters it is possible to express the functions { d

dμyj(x)}j=1,2 and { d
dμy

′
j(x)}j=1,2

in terms of {yj}j=1,2 and {y′j}j=1,2, respectively. It is then possible to expand m(μ)

7Clearly, we mean with respect to the natural ordering on R.
8A given μ ∈ C is said to be in a band if −2 ≤ k(μ) ≤ 2 and in a gap otherwise. Notice that

since L[u] is self-adjoint on L2(R), k(μ) �= 0 for all μ nonreal.
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Fig. 4.1. The above three plots are meant to illustrate the role the quantity k′(0) has in de-
termining the structure of the T -periodic spectrum of L[u]. In each, the horizontal dashed lines
correspond to the values ±2, and the points μj correspond to the band edges of L[u]. The points μ1,
μ4, and μ5 are T -periodic eigenvalues of L, while the points μ2 and μ3 are 2T -periodic eigenvalues,
and the dark lines along the real axis correspond to the L2(R) spectrum of L[u]. When k′(0) �= 0,
zero is a nondegenerate band edge corresponding to a T-periodic eigenvalue of multiplicity one. In
particular, notice that whether μ = 0 is a left or right band edge is determined completely by the
sign of k′(0). When k′(0) vanishes, the neighboring gap closes and μ = 0 becomes a double point of
the spectrum, corresponding to a T -periodic eigenvalue of multiplicity two.

to first order in a neighborhood of μ = 0, and then using the facts that det( m(0)) = 1
and k(0) = 2 some algebra eventually yields the expression

k′(0) = sign(y′1(T ))
∫ T

0

(
y2(x)

√
y′1(T ) + sign(y′1(T ))

y1(T )− y′2(T )
2
√
y′1(T )

y1(x)

)2

dx.

Therefore,

sign(k′(0)) = sign(y′1(T )) = sign(TE)

as claimed. This completes the proof. Notice, in particular, that if TE = 0, a second
T -periodic solution of L[u]v = 0 is given explicitly by the function {u, T }a,E.

Remark 8. The information in Lemma 4.2 is directly related to the nonlinear sta-
bility results presented in Pava and Natali (2008) in the case of the gKdV: recall that
only the case a = 0 is considered. There, the authors construct a curve (0, E(c), c) ∈ Ω
such that the corresponding periodic solutions are T -periodic. By the implicit func-
tion theorem, such a curve (locally) exists if and only if TE 
= 0, and hence property
(P0) in Pava and Natali (2008) is equivalent with the period not having a critical point
in the energy at E0. Moreover, properties (P1) and (P2) state that the linear operator
L[u] acting on L2

per([0, T ]) has one negative eigenvalue and that the zero eigenvalue is
simple. By Lemma 4.2 this is equivalent with the positivity of the Jacobian TE. Thus,
by the result of Schaaf (1985) mentioned earlier, properties (P0) − (P2) are satisfied
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for a wide class of dnoidal type solutions of the gKdV including all elliptic function
solutions of the KdV and mKdV considered in Pava and Natali (2008). Thus, for
such solutions one must check only property (P3). It should be noted, however, that
property (P3) is not equivalent with Pc > 0 but is rather a reduction of our theory to
the case a = 0; see Remark 10 below for more details.

In the solitary wave case, the spectrum of the operator L[u] always satisfies (i)
in the above trichotomy. However, since the constants a and E are not restricted to
be zero in the periodic context, it is not surprising that such a nontrivial trichotomy
might exist. Throughout the rest of the paper, unless otherwise stated, we will assume
that TE > 0 at (a0, E0, c0), and hence zero is a simple eigenvalue of the operator L[u]
considered on the space L2

per(R). We will see in the next section that a result of
Schaaf (1985) implies that this assumption is valid for a wide class of dnoidal type
waves, and hence our results apply to all such solutions. It follows that any φ ∈ X can
be decomposed as a linear combination of ux, an element in the positive subspace of
L[u], and χ, where χ is the unique positive eigenfunction of L[u] with ‖χ‖L2([0,T ]) = 1
which satisfies 〈L[u]χ, χ〉 = −λ2 for some λ > 0. It follows that χ is the eigenfunction
corresponding to the unique negative eigenvalue −λ2 of L[u].

From Lemma 4.2, we know that u is a degenerate saddle point of the functional
E0 on X , with one unstable direction and one neutral direction. In order to get rid
of the unstable direction, we note that the evolution of (1.1) does not occur on the
entire space X but on the codimension two submanifold defined by

Σ0 := {φ ∈ X : M(φ) =M(a0, E0, c0), P(φ) = P (a0, E0, c0)}.

It is clear that Σ0 is indeed a smooth submanifold of X in a neighborhood of the
group orbit Ou. Moreover, the entire orbit Ou is contained in Σ0. The main technical
result needed for this section is that the functional E0 is coercive on Σ0 with respect
to the semidistance ρ, which is the content of the following proposition.

Proposition 4.3. Let (a0, E0, c0) ∈ Ω. If each of the quantities TE, {T,M}a,E,
and {T,M,P}a,E,c are positive, then there exist positive constants C1, δ which depend
on (a0, E0, c0) such that

E0(φ)− E0(u) ≥ C1ρ(φ, u)
2

for all φ ∈ Σ0 such that ρ(φ, u) < δ.
The proof of Proposition 4.3 is broken down into three lemmas which analyze

the quadratic form induced by the self-adjoint operator L[u]. To begin, we define a
function φ0 by

φ0(x) := {u(x; a,E, c), T (a,E, c),M(a,E, c)}a,E,c

∣∣
(a0,E0,c0)

.

It follows from a straightforward calculation that φ0 ∈ X and

L[u]φ0 = −{T,M}E,c − {T,M}a,Eu,

where the right-hand side is evaluated at (a0, E0, c0). This function plays a large
role in the spectral stability theory for periodic traveling wave solutions9 of (1.1)
outlined in section 3. In particular, we have ∂xL[u]φ0 = −{T,M}a,Eux, and hence,
assuming {T,M}a,E 
= 0 at (a0, E0, c0), φ0 is in the generalized periodic null space of

9Actually, the function uc plays a large role in our analysis via the periodic Evans function.
However, since uc is not in general T -periodic, we work here with its periodic analogue φ0.
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the linearized operator ∂xL[u]. By our assumption that {T,M,P}a,E,c 
= 0, it follows
that 〈u, φ0〉 is nonzero and hence φ0 does not belong to the set

T0 = {φ ∈ X : 〈u, φ〉 = 〈1, φ〉 = 0}.

Geometrically speaking, T0 is precisely the tangent space in X to Σ0. Using the
spectral resolution of the operator L[u], we begin the proof of Proposition 4.3 with
the following lemma.

Lemma 4.4. Assume that TE, {T,M}a,E, and {T,M,P}a,E,c are positive. Then
〈L[u]φ, φ〉 > 0 for every φ ∈ T0 which is orthogonal to the periodic null space of L[u].

Proof. The proof is essentially found in the work of Bona, Souganidis, and Strauss
(1987). By Lemma 4.2 we can write φ0 = αχ + βux + p and φ = Aχ + p̃ for some
constants α, β, and A and functions p and p̃ belonging to the positive subspace of
L[u]. By assumption the quantity

(4.3) 〈L[u]φ0, φ0〉 = −{T,M}a,E{T,M,P}a,E,c

is negative, and hence the above decomposition of φ0 implies that

(4.4) 0 >
〈
−λ2αχ+ L[u]p, αχ+ βux + p

〉
= −λ2α2 + 〈L[u]p, p〉 ,

which gives an upper bound on the positive number 〈L[u]p, p〉. Similarly, the assump-
tion that φ ∈ T0 along with the above decomposition of φ implies

(4.5) 0 = 〈L[u]φ0, φ〉 = −λ2Aα+ 〈L[u]p, p̃〉 .

Therefore, a simple application of Cauchy–Schwarz implies

〈L[u]φ, φ〉 = −λ2A2 + 〈L[u]p̃, p̃〉 ≥ −λ2A2 +
〈L[u]p̃, p〉2

〈L[u]p, p〉 > 0

as claimed.
Remark 9. In the above proof, the positivity of the quantities {T,M}a,E and

{T,M,P}a,E,c was never used; only the product was required to be positive. However,
we show in Corollary 4.7 that the former is always positive if the latter is negative.

Also, if {T, P}E,c 
= 0, then one can repeat the above proof with the function φ0
replaced by φ̃0 = {u, T, P}a,E,c. Then (4.3) would be replaced with 〈L[u]φ̃0, φ̃0〉 =
{T, P}E,c{T,M,P}a,E,c, which we would have to assume to be negative. It follows
that sign ({T,M}a,E) = −sign ({T, P}E,c) so long as {T,M,P}a,E,c 
= 0. In par-
ticular, in the case of a power-law nonlinearity, Pc < 0 implies {T,M}a,E > 0 if
{T,M,P}a,E,c 
= 0. It is unknown if {T,M,P}a,E,c is negative in this case.

Remark 10. Some comments are now in order concerning the function φ0 and its
relation to the work in Pava and Natali (2008), where again the authors consider the
a = 0 case. Notice that φ0 is essentially constructed to be the periodic version of the
function − d

dcu(x; c) from the solitary wave theory in that it is the preimage of the
function u under L[u]. Given the restriction a = 0 it follows by a direct calculation
that the function φ0 can be replaced with the function10

(4.6) − d

dc
u(x; 0, E(c), c) =

1

TE
{u, T }E,c,

10However, notice that the function in (4.6) does not have zero mean over a period; by the dynamic
version of the spectral problem it follows that all nontrivial time dynamics occur on the range of the
operator ∂x on L2

per([0, T ]), i.e., the class of mean zero functions.
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and hence (4.3) in this case would read

d

dc

∫ T (0,E(c),c)

0

u(x; 0, E(c), c)2dx = 2

〈
u,

1

TE
{u, T }E,c

〉
=

2

TE
{P, T }E,c < 0.

Thus, in the language of the present paper the requirement (P3) given by Pava and
Natali (2008) is equivalent with the product TE and {P, T }E,c being negative. Thus,
our results are completely equivalent with the results presented in Pava and Natali
(2008) in the case where a = 0. The difference in our methods is essentially the
following: in Pava and Natali (2008), the authors spend a lot of time constructing the
curve (0, E(c), c) ⊂ Ω on which the period is constant, but according to our results
the construction of this curve is not important; the local tangent vectors give you
sufficient information. Moreover, the geometric description presented here allows for,
at least for gKdV type equations, an easy verification of properties (P0)− (P2) given
in Pava and Natali (2008). However, recall here that we consider all of Ω, not just the
codimension one subset Ω

∣∣
a=0

, and that it is not clear how the Jacobian {P, T }E,c

relates to the spectral stability of the underlying wave.
Our strategy in proving Proposition 4.3 is to find a particular set of translates of a

given φ ∈ Uε for which the inequality holds. To this end, we show that for each φ ∈ Uε

with ε sufficiently small, there exists a set of translates of φ which are orthogonal to
the periodic null space of L[u]. This is the content of the following lemma.

Lemma 4.5. There exist an ε > 0 and a unique C1 map α : Uε → R such that
for all φ ∈ Uε, the function φ (·+ α(φ)) is orthogonal to ux.

The proof is presented in the work of Bona, Souganidis, and Strauss (1987) and
is an easy result of the implicit function theorem. We now complete the proof of
Proposition 4.3 by proving the following lemma.

Lemma 4.6. If each of the quantities TE, {T,M}a,E, and {T,M,P}a,E,c are

positive, there exist positive constants C̃ and ε such that

E0(φ) − E0(u) ≥ C̃‖φ(·+ α(φ)) − u‖2X
for all φ ∈ Uε ∩ Σ0.

Proof. Let ε > 0 be small enough such that Lemma 4.5 holds. Fix φ ∈ Uε ∩ Σ0,
and write

φ(·+ α(φ)) = (1 + γ)u+

(
β − γ 〈u〉

T

)
+ y,

where y ∈ T0. Moreover, define v = φ(·+α(φ))−u and note that by replacing u with
Rξu if necessary we can assume that ‖v‖X < ε. By Taylor’s theorem, we have

M(a0, E0, c0) = M(φ) =M(a0, E0, c0) + 〈1, v〉+O
(
‖v‖2X

)
.

Since 〈1, v〉 = βT , it follows that β = O
(
‖v‖2X

)
. Similarly, we have

P (a0, E0, c0) = P (a0, E0, c0) + 〈u, v〉+O
(
‖v‖2X

)
.

Moreover, defining 〈g〉 =
∫ T

0
g(x)dx for g ∈ L1

per([0, T ];R), a direct calculation yields

〈u, v〉 = γ

(
‖u‖2L2([0,T ]) −

〈u〉2

T

)
+ β 〈u〉 .

Since 〈u〉2 < T ‖u‖2L2([0,T ]) by Jensen’s inequality, it follows that γ = O
(
‖v‖2X

)
.
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Now, by Taylor’s theorem and the translation invariance of E0, we have

E0(φ) = E0 (φ(·+ α(φ))) = E0(u) +
1

2
〈L[u]v, v〉+ o

(
‖v‖2X

)
.

Hence, by the previous estimates on γ and β, it follows that

E0(φ)− E0(u) =
1

2
〈L[u]v, v〉+ o

(
‖v‖2X

)
=

1

2
〈L[u]y, y〉+ o

(
‖v‖2X

)
.

Since y ∈ T0 and 〈y, ux〉 = 0 by Lemma 4.5, it follows from Lemma 4.4 that

E0(φ) − E0(u) ≥
C1

2
‖y‖2 + o

(
‖v‖2X

)
.

Finally, the estimates

‖y‖X =

∥∥∥∥v − γu− β − γ 〈u〉
T

∥∥∥∥
X

≥
∣∣∣∣‖v‖X −

∥∥∥∥γu− β − γ 〈u〉
T

∥∥∥∥
X

∣∣∣∣
≥ ‖v‖X −O

(
‖v‖2X

)
prove that E0(φ)− E0(u) ≥ C1

4 ‖v‖2X for ‖v‖X sufficiently small.
Proposition 4.3 now clearly follows by Lemma 4.6 and the definition of the semidis-

tance ρ. It is now straightforward to complete the proof of Lemma 4.1.
Proof of Lemma 4.1. We now deviate from the methods of Bona, Souganidis, and

Strauss (1987) and Grillakis, Shatah, and Strauss (1987) and rather follow the direct
method of Gallay and Hărăguş (2007). Let δ > 0 be such that Proposition 4.3 holds,
and let ε ∈ (0, δ). Assume φ0 ∈ X satisfies ρ(φ0, u) ≤ ε for some small ε > 0. By
replacing φ0 with Rξφ0 if needed, we may assume that ‖φ0 − u‖X ≤ ε. Since u is
a critical point of the functional E0, it is clear that we have E0(φ0) − E0(u) ≤ C1ε

2

for some positive constant C1. Now, notice that if φ0 ∈ Σ0, then the unique solution
φ(·, t) of (1.1) with initial data φ0 satisfies φ(·, t) ∈ Σ0 for all t > 0. Thus, Proposition
4.3 implies there exists a C2 > 0 such that ρ(φ(·, t), u) ≤ C2ε for all t > 0. Thus,
φ(·, t) ∈ Uε for all t > 0, which proves Lemma 4.1 in this case.

If φ0 /∈ Σ0, then we claim we can vary the constants (a,E, c) slightly in order
to effectively reduce this case to the previous one. Indeed, notice that since we have
assumed {T,M,P}a,E,c 
= 0 at (a0, E0, c0), it follows that the map

(a,E, c) �→ (T (u( · ; a,E, c)),M(u( · ; a,E, c)), P (u( · ; a,E, c)))

is a diffeomorphism from a neighborhood of (a0, E0, c0) onto a neighborhood of

(T (a0, E0, c0),M(a0, E0, c0), P (a0, E0, c0)).

In particular, we can find constants a, E, and c with |a|+ |E|+ |c| = O(ε) such that
the function

ũ = ũ( · ; a0 + a,E0 + E, c0 + c)
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solves (1.1), belongs to the space X , and satisfies

M(a0 + a,E0 + E, c0 + a) = M(φ0),

P (a0 + a,E0 + E, c0 + c) = P(φ0).

Defining a new augmented energy functional on X by

Ẽ(φ) = E0(φ) + cP(φ) + aM(φ) + ET,

it follows as before that

Ẽ(φ(·, t)) − Ẽ(ũ) ≥ C3ρ(φ(·, t), ũ)2

for some C3 > 0 as long as ρ(φ(·, t), ũ) is sufficiently small. Since ũ is a critical point

of the functional Ẽ , we have

C3ρ(φ(·, t), ũ)2 ≤ Ẽ(φ0)− Ẽ(ũ) ≤ C4‖φ0 − ũ‖2X

for some C4 > 0. Moreover, it follows by the triangle inequality that

‖φ0 − ũ‖X ≤ ‖φ0 − u‖X + ‖u− ũ‖X ≤ C5ε

for some C5 > 0, and hence there is a C6 > 0 such that

ρ(φ(·, t), u) ≤ ρ(φ(·, t), ũ) + ‖ũ− u‖X ≤ C6ε

for all t > 0. The proof of Lemma 4.1, and hence Theorem 1.1, is now complete.
We would like to point out an interesting artifact of the above proof. Notice that

the only stage at which the sign of the quantities {T,M,P}a,E,c and {T,M}a,E came
into play was in the proof of Lemma 4.4, from which we have the following corollary
by Theorem 3.2 and (4.3).

Corollary 4.7. On the set Ω, the quantity {T,M}a,E is positive whenever TE
is positive and {T,M,P}a,E,c is negative.

Remark 11. Interestingly, in terms of the classical action Corollary 4.7 states
that the Hessian of K given in (1.6) cannot be positive definite. We suspect that the
underlying reason for this is that the operator L[u] on L2

per([0, T ]) cannot be positive
definite due to the translation invariance of (1.1), but we cannot show this as of yet.
In any case, it would be interesting to understand the mechanism behind this result
as it could possibly illuminate more of the relationship between the dynamics of the
gKdV flow and the classical mechanics of the traveling wave ODE.

It follows that we have a geometric theory of the orbital stability of periodic
traveling wave solutions of (1.1) to perturbations of the same period as the underlying
periodic wave. In the next two sections, we consider specific examples and limiting
cases where the signs of these quantities can be easily calculated. First, we consider
periodic traveling wave solutions sufficiently close to an equilibrium solution (a local
minimum of the effective potential) or to the bounding homoclinic orbit (the separatrix
solution). By considering power-law nonlinearities in each of these cases, we give
necessary and sufficient11 conditions for the orbital stability of such solutions. Second,
we consider the KdV and prove that all periodic traveling wave solutions are orbitally
stable to perturbations of the same periodic as the underlying periodic wave.

11Except in the exceptional case of being near the homoclinic orbit for p = 4.
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5. Analysis near homoclinic and equilibrium solutions. In this section, we
use the theory from section 4 in order to prove general results about the stability of
periodic traveling wave solutions of (1.1) in two distinguished limits: as one approaches
the solitary wave (i.e., (a,E, c) ∈ Ω and consider the limit T (a,E, c) → ∞ for fixed
a, c) as well as in a neighborhood of the equilibrium solution (i.e., near a nondegenerate
local minimum of the effective potential V (u; a, c)). Throughout this section, we will
consider only power-law nonlinearities.

We begin with considering stability near the solitary wave. Our main result in
this limit is that the quantities TE and {T,M}a,E are positive for (a0, E0, c0) ∈ Ω
with sufficiently large period. Hence, the orbital stability of such a solution in this
limit is determined completely by the periodic spectral stability index {T,M,P}a,E,c,
which in turn is controlled by the sign of the solitary wave stability index (1.3). To
begin, we point out a result of Schaaf (1985) which gives sufficient conditions for a
planar Hamiltonian system to have the period increasing as a function of energy.

Lemma 5.1. Assume that G is a C3 function on (0,∞) and that G vanishes only
at one point x0 with G′′(x0) > 0. Define

A = {x ∈ R : x < x0 and G(s) < 0 for all s ∈ (x, x0)}.

Suppose for each α ∈ A there exists a periodic solution x(t) > 0 of the equation

x′′(t) +G(x(t)) = 0

with initial data x(0) = α, x′(0) = 0. Let P (α) denote the period of this solution. If
G satisfies the two conditions

G′(x) > 0, x ∈ A ⇒ 5G′′(x)2 − 3G′(x)G′′′(x) > 0;

G′(x) = 0, x ∈ A ⇒ G(x)G′′(x) < 0,

then P is differentiable on A and P ′(α) > 0.
In order to see that Lemma 5.1 applies in our case, we assume the equation is

scaled such that c = 1, and we define G(x) := V ′(x, a, 1) and assume G(xa) = 0,
G′(xa) > 0. Define A as above, and notice that G ∈ C3(0,∞). Then for all x such
that G′(x) > 0, we have xp > 1

p+1 and hence(
5G′′2 − 3G′G′′′) (x) > 5p2(p+ 1)xp−2 > 0.

Moreover, if G′(x) = 0, then xp = 1
p+1 and hence

G(x)G′′(x) = p

(
1

p+ 1
− 1− a(p+ 1)xp−1

)
.

If we assume that a is such that

(5.1) a

(
1

p+ 1

)(p−1)/p

>
1

(p+ 1)2
− 1

p+ 1
,

then it follows that G′(x)G′′(x) < 0 when xp = 1
p+1 . In particular, notice that given

any p > 1, the inequality (5.1) holds for all a ≥ 0 and for a < 0 sufficiently small. In
any case, it follows that we have the following lemma.

Lemma 5.2. In the case of a power-law nonlinearity f(u) = up+1, suppose that
(a0, E0, 1) ∈ Ω and assume a0 and p satisfy (5.1) and that u( · ; a0, E0, 1) > 0. Then
TE > 0 at (a0, E0, 1).
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With this in mind, we are able to state our main theorem on the orbital stability
of dnoidal type periodic traveling waves of sufficiently large period.

Theorem 5.3. In the case of a power-law nonlinearity, i.e., f(u) = up+1 with
p ≥ 1, a dnoidal type periodic traveling wave solution of (1.1) of sufficiently large
period and (a,E, c) ∈ Ω with |a| sufficiently small is orbitally stable if p < 4 and
exponentially unstable to perturbations of the same period as the underlying wave if
p > 4.

Proof. The proof follows by the work of Bronski and Johnson (2008). In partic-
ular, since we are working with a power-law nonlinearity, the periodic traveling wave
solutions satisfy the scaling relation

(5.2) u(x; a,E, c) = c1/pu

(
c1/2x;

a

c1+1/p
,

E

c1+2/p
, 1

)
from which we get the asymptotic relation

{T,M,P}a,E,c ∼ −TEMa

(
2

pc
− 1

2c

)
P

as Ω � (a,E, c) → (0, 0, c) for a fixed wave speed. Moreover, the quantity Ma is
negative for such (a,E, c) ∈ Ω, again by the work on Bronski and Johnson (2008).
Since {T,M}a,E = M2

E − TEMa, it follows from Lemma 5.1 and Theorem 3.2 that
the solutions u(x; a,E, c) with (a,E, c) ∈ Ω of sufficiently large period are orbitally
stable if p < 4 and exponentially unstable to periodic perturbations if p > 4 as
claimed.

Next, we consider periodic traveling wave solutions near the equilibrium solution.
We will use the methods of this paper to prove that such solutions are orbitally stable
to periodic perturbations, provided that a is sufficiently small. To begin, we fix a
wave speed c > 0, assume |a| � 1, and consider (1.1) with a power-law nonlinearity
f(u) = up+1 with p ≥ 1. Since TE > 0 by Lemma 5.1, it suffices to prove that
{T,M}a,E and {T,M,P}a,E,c are both positive near the equilibrium solution. By
continuity, it is enough to evaluate both these indices at the equilibrium and to show
they are both positive there. This is the content of the following lemma.

Lemma 5.4. Consider (1.1) with a power-law nonlinearity f(u) = up+1 for p ≥ 1.
Then the quantity Ma is negative for all (a0, E0, c0) ∈ Ω such that |a| is sufficiently
small and the corresponding solution u( · ; a0, E0, c0) is sufficiently close to the equi-
librium solution.12

Proof. First, denote the equilibrium solution as ua,c and define E∗(a, c) =
V (ua,c; a, c). It follows that limE↘E∗ T (a,E, c) = 2π√

cp and that the equilibrium solu-

tion admits the expansion

ua,c = c1/p
(
1 +

a

p

)
+O(a2).

Now, solutions near the equilibrium ua,c can each be written as

u(x; a,E, c) = Pa,E,c(ka,E,cx),

where ka,E,cT (a,E, c) = 2π and Pa,E,c is a 2π periodic solution of the ODE

k2a,E,cv
′′ + vp+1 − c1+1/pa = 0

12In the case of the KdV (p = 1), Ma is negative in a deleted neighborhood of the equilibrium
solution.
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such that Pa,E∗,c = ua,c and k2a,E∗,c = (p+ 1)upa,c − c. Straightforward computations
give the expansions

Pa,E,c(z) = ua,c +O(
√
E − E∗ (1 + a2

)
),

k2a,E,c = cp+ (p+ 1)ca+O((E − E∗) + a2).

Thus, the mass M(a,E, c) can be expanded as

M(a,E, c) =

∫ 2π/ka,E,c

0

Pa,E,c(ka,E,cz)dz

=
2πc1/p
√
cp

(
1 +

(1− p)a

2p

)
+O(

√
E − E∗ + a2).

It follows that

∂

∂a
M(a,E, c)

∣∣
(0,E∗,c) =

πc1/p(1 − p)

p
√
cp

which is negative for p > 1.
The case p = 1, which corresponds to the KdV equation, will be discussed in

the next section. There we will show that although Ma vanishes at the equilibrium
solution, it is indeed negative for nearby periodic traveling waves with the same wave

speed c, i.e., ∂2

∂E∂aM(a,E, c)
∣∣
(0,E∗,c) < 0.

Next, we must determine the sign of the periodic spectral stability index. Al-
though it follows from Theorem 4.4 in the work of Hărăguş and Kapitula (2008) that
this index must be positive, we present an independent proof based on periodic Evans
function methods. To this end, we point out that by the Hamiltonian structure of the
linearized operator ∂xL[u] we have the identity

{T,M,P}a,E,c = −2

3
tr (Mμμμ(0)) ,

where M(μ) is the corresponding monodromy operator (see Theorem 3 of Bronski
and Johnson (2008) for details). Thus, it is sufficient to show that tr(Mμμμ(0)) is
negative near the equilibrium solution. This is the content of the next lemma.

Lemma 5.5. Consider (1.1), and suppose u0 is a nondegenerate local minima of
the corresponding effective potential V (u; a, c). Then tr (Mμμμ(0)) < 0 at u0.

Proof. The key point is that if we write (3.1) as a first order system of the form
Φx = H(x, μ)Φ by the usual procedure, then the matrix H(x, μ) reduces to the
(spatially) constant matrix

H(μ) =

⎛⎝ 0 1 0
0 0 1
−μ −V ′′(u0; a, c) 0

⎞⎠
at the equilibrium solution u0. Thus, the corresponding monodromy operator at u0
can be expressed as M(μ) = exp (H(μ)T0), where T0 = 2π√

V ′′(u0)
. Thus, in order

to calculate the function tr(M(μ)), it is sufficient to calculate the eigenvalues of the
constant matrix H(μ).

Now, the periodic Evans function corresponding to the constant coefficient system
induced by H(μ) can be written as

D0(μ, λ) = det (H(μ) − λI) = −λ3 − V ′′(u0; a, c)λ− μ.
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In particular, notice that ∂
∂λD0(μ, λ) = −λ2 − V ′′(u0; a, c). Since V ′′(u0; a, c) > 0, it

follows that the function D0(μ, · ) will have precisely one real root for each μ ∈ R.
This distinguished root is given by the formula

γ1(μ) =

(
2
3

)1/3
V ′′(u0)(

9μ+
√
3
√
27μ2 + 4V ′′(u0)3

)1/3
︸ ︷︷ ︸

=:α(μ)

+

⎛⎜⎝−

(
9μ+

√
3
√
27μ2 + 4V ′′(u0)3

)1/3
21/332/3

⎞⎟⎠
︸ ︷︷ ︸

=:β(μ)

.

Defining ω = exp(2πi/3) to be the principle third root of unity, the two complex
eigenvalues of H(μ) can be written as γ2(μ) = ωα(μ) + ωβ(μ) and γ3(μ) = ωα(μ) +
ωβ(μ), and hence

tr (M(μ)) = exp (γ1(μ)T0) + exp (γ2(μ)T0) + exp (γ3(μ)T0) .

Now, a straightforward, yet tedious, calculation using the facts that 1 + ω + ω = 0
and ω2 = ω implies that

tr (Mμμμ(0)) = 9T 2
0 (α′′(0)β′(0) + α′(0)β′′(0)) + 3T 3

0

(
α′(0)3 + β′(0)3

)
.

Moreover, from the definitions of α and β we have

α′(0) = − 1

2V ′′(u0)
= β′(0) and α′′(0) =

√
3

4V ′′(u0)5/2
= −β′′(0).

Therefore, we have the equality

tr (Mμμμ(0)) = − 6π3

V ′′(u0)9/2
,

which is clearly negative.
Therefore, it follows that in the case of a power-nonlinearity and solutions suffi-

ciently close to a nondegenerate minima of the effective potential, each of the quan-
tities TE , {T,M}a,E, and {T,M,P}a,E,c are positive. Therefore, Theorem 1.1 imme-
diately yields the following result.

Theorem 5.6. Consider (1.1) with a power-law nonlinearity f(u) = up+1 for
p ≥ 1. Then the periodic traveling wave solutions with (a,E, c) ∈ Ω and a2+(E−E∗)2

sufficiently small are orbitally stable in the sense of Theorem 1.1.

6. The KdV equation. In this section, we will apply the general theory from
section 4 in order to prove that periodic traveling wave solutions of (1.1) with f(u) =
u2 and c > 0 are orbitally stable with respect to periodic perturbations if and only
if they are spectrally stable to such perturbations. Although all solutions of this
equation are cnoidal of the form (1.5), our proof does not rely on the explicit form
of the solution; instead, we use the form of the traveling wave ODE to reduce such
solutions to quadrature and then apply the theory from section 3. To this end, recall
from (5.2) that solutions of the KdV equation

(6.1) ut = uxxx + (u2)x − cux

satisfy the scaling relation u(x; a,E, c) = c u
(
c1/2x; ac−1, Ec−3, 1

)
. Thus, by scaling

we may always assume that c = 1 in (6.1); notice that by the transformation u �→ −u,
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once can always consider the KdV equation with positive wave speeds, and there is no
loss in generality in assuming that c = 1 here. Moreover, we may always assume that
a = 0 due to the Galilean invariance of the KdV. Therefore, it is sufficient to determine
the stability of periodic traveling wave solutions of (6.1) of the form u(x; 0, E, 1). In
order to do so, we need the following easily proved lemma.

Lemma 6.1. Let μ be a (Borel) probability measure on some interval I ⊂ R, and
let f, g : I → R be bounded and measurable functions. Then

(6.2) 〈fg〉 − 〈f〉 〈g〉 = 1

2

∫
I×I

(f(x) − f(y)) (g(x)− g(y)) dμxdμy,

where 〈f〉 =
∫
I f(x)dμ. In particular, if both f and g are strictly increasing or strictly

decreasing and if the support of μ is not reduced to a single point, then 〈fg〉 > 〈f〉 〈g〉.
The proof of this lemma is a trivial result of Fubini’s theorem, as one can see by

writing the left-hand side of (6.2) as an iterated integral and simplifying the resulting
expression. Now, recall from Lemma 5.1 that TE > 0 for periodic traveling wave
solutions of (6.1). To conclude orbital stability, we must identify the signs of the
Jacobians {T,M}a,E and {T,M,P}a,E,c. The main technical result we need for this
section is the following lemma, which uses Lemma 6.1 to guarantee the sign of the
quantity in (4.3) is completely determined by the Jacobian {T,M,P}a,E,c.

Lemma 6.2. If f(u) = u2 in (1.1), then {T,M}a,E > 0 for all (a0, E0, c0) ∈ Ω
which do not correspond to the unique equilibrium solution.

Proof. First, notice that {T,M}a,E =M2
E − TEMa, and thus by Lemma 5.1 it is

enough to prove that Ma < 0. Moreover, by scaling it is enough to consider the case
c = 1 and a = 0. It follows for f given as above that we can find functions u1, u2,
and u3 which depend smoothly on (a,E, c) within the domain Ω such that

3 (E − V (u; 0, 1)) = (u − u1)(u − u2)(u3 − u).

Notice that the assumption that we are not at the equilibrium solution implies that
the roots ui are distinct and moreover that V ′(ui; 0, 1) 
= 0. Since E − V (ui; 0, 1) = 0
on Ω, it follows that

V ′(ui; 0, 1)
∂ui
∂a

= ui.

Since we have the relations

u1 < 0, u2, u3 > 0, and u1 + u2 + u3 =
3c

2
,

it follows that on Ω we have

(6.3)
∂u2
∂a

< 0,
∂u3
∂a

> 0, and
∂u2
∂a

+
∂u3
∂a

= −∂u1
∂a

> 0.

Now, by making the change of variables u �→ s(θ) = u2 cos
2(θ) + u2 sin

2(θ), we
have du = 2

√
(u − u2)(u3 − u)dθ, and hence (2.5) yields the expression

M(a,E, c) = 2
√
6

∫ π/2

0

s(θ) dθ√
s(θ)− u1

.(6.4)
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Notice we suppress the dependence of s(θ) on the parameters (a,E, c). Defining σ(θ) =√
s(θ)− u1, a straightforward computation using (6.3) shows that the derivative of

the integrand in (6.4) with respect to the parameter a can be expressed as

∂

∂a

(
s(θ)√
s(θ)− u1

)
=
∂u2
∂a

(
cos2(θ)− sin2(θ)

2σ(θ)

)
− u1

∂u2
∂a

(
cos2(θ) − sin2(θ)

2σ(θ)3

)

−
(
∂u2
∂a

+
∂u3
∂a

)(
s(θ) cos2(θ)− u1

(
cos2(θ) − sin2(θ)

)
2σ(θ)3

)
.

Since the functions cos2(θ)− sin2(θ) and σ(θ)−1 are strictly decreasing on the interval
(0, π/2), it follows from Lemma 6.1 that∫ π/2

0

cos2(θ)− sin2(θ)

σm(θ)
dθ > 0

for any m > 0. Evaluating the above expression at (a,E, c) = (0, E, 1) ∈ Ω implies
that s(θ) > 0 for all θ ∈ (0, π/2), and hence (6.3) implies that

∫ π/2

0

∂

∂a

(
s(θ)√
s(θ)− u1

)
dθ < 0

at (0, E, 1), from which the lemma follows.
Therefore, our main theorem on the stability of periodic traveling wave solutions

of the KdV equation follows by Theorems 1.1 and 3.2 and Lemma 6.2.
Theorem 6.3. Let (a0, E0, c0) ∈ Ω, and assume that {T,M,P}a,E,c 
= 0 at

(a0, E0, c0). The corresponding periodic solution of (2.1) is orbitally stable in the
sense of Theorem 1.1 if and only if it is spectrally stable to T (a0, E0, c0) periodic
perturbations.

An interesting corollary of Theorem 6.3 applies to cnoidal wave solutions of the
KdV. It was suggested by Benjamin (1974) that such solutions should be stable to
perturbations of the same period. As mentioned in the introduction this conjecture
has been proved both by using the complete integrability of the KdV by McKean
(1977) and by Bottman and Deconinck (2008), and by variational methods by An-
gulo, Bona, and Scialom (2006). In particular, the work of Bottman and Deconinck
(2008) shows that the cnoidal solutions of the KdV are spectrally stable to localized
perturbations and are linearly stable to perturbations with the same period as the
underlying wave. Clearly then such solutions are spectrally stable with respect to
periodic perturbations. Paired with Theorem 6.3, this provides another verification
of Benjamin’s conjecture in the case where the cnoidal wave has positive wave speed.
Moreover, in each of the above papers the authors made use of the exact form of
the cnoidal wave solution, and their computations involved tedious elliptic function
calculations. In contrast, notice in the proof presented above that we never used the
explicit form of the solution; we needed only information about the effective potential
and the governing PDE. To summarize, we note the following corollary of the above
calculations; as noted above, the restriction on positive wave speed can be relaxed
here due to scaling.

Corollary 6.4. The cnoidal wave solutions of (6.1) of the form (1.5) are or-
bitally stable in the sense of Theorem 1.1.



1946 MATHEW A. JOHNSON

7. Concluding remarks. In this paper, we extended the recent results of Bron-
ski and Johnson (2008) on the spectral stability of periodic traveling wave solutions
of the gKdV in order to derive sufficient conditions for the orbital stability of the full
four-parameter family of periodic traveling wave solutions. By extending the methods
of Bona, Souganidis, and Strauss to the periodic case, a new geometric condition was
found which could be expressed in terms of a map from the traveling wave parame-
ters to the conserved quantities of the PDE flow restricted to the manifold of periodic
traveling waves. Moreover, this paper extended the general results of Pava and Natali
(2008) on the gKdV equation with power-law nonlinearity to the case where a 
= 0.
However, there are still many intriguing questions remaining.

Notice that it is not clear what happens in the case TE < 0; we suspect this is
not sufficient to determine orbital instability, even though the linear operator L[u]
acting on L2

per([0, T ]) has two negative eigenvalues in this case. In the solitary wave
theory, the existence of two negative eigenvalues of the second variation L[u] indicates
instability. However, it is not clear if this is true in the periodic context. Moreover, the
role of the Jacobian {T,M}a,E is not clear from the above work. As noted previously,
the sign of this Jacobian plays no role in the spectral stability theory, but by (4.3) it
plays a large role in the nonlinear stability theory. Thus, one is left with the possibility
of having a spectrally stable gKdV periodic traveling wave which is not orbitally stable
to perturbations of the same period; this stands in stark contrast to the solitary wave
case, where orbital stability is equivalent to spectral stability (except possibly on the
transition curve). However, it seems quite possible that such a situation arises due to
the fact that the solitary waves are a codimension two subset of the family of traveling
wave solutions.

Finally, it is not clear how to extend these methods to consider perturbations whose
period is, say, an integer multiple of that of the underlying wave. In particular, our
method of proof breaks down in Lemma 4.4: if one considers perturbations of period
NT with N > 1, the operator L[u] considered on L2

per[(0, NT )] has more than one
negative eigenvalue, and hence the inequality (4.4) no longer has enough information
to determine if the quadratic form induced by L is positive definite on T0. Thus, the
above methods are in need of modification in order to consider such perturbations.
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