
Math 951 – Advanced PDE II
Homework 1: Due Wednesday, February 12 at 3pm

Spring 2020

Turn in solutions to all problems not marked as “suggested”. Working together in
groups is HIGHLY suggested, although each person from the group must submit their own
solutions.

1. Let p ∈ [1,∞) and U ⊂ Rn be open. Prove that translation is continuous in Lp(U).
More precisely, prove that for all f ∈ Lp(U) and for every open V such that the
closure V is compact and V ⊂ U , denoted V b U , we have

lim
h→0
‖f(·+ h)− f(·)‖Lp(V ) = 0.

Is this result true for p =∞? Either give a proof or a counterexample.
(Hint: For the first part, prove this for smooth functions with compact support, and
then use the density of such functions in Lp(U). Note: You will receive VERY little
credit for this problem if you DO NOT show the details of your density argument.)

2. Suppose that U ⊂ Rn is open and bounded with smooth boundary and that Ω1,Ω2 ⊂
U are two non-empty disjoint open sets with smooth boundaries which decompose U
in the sense that U = Ω1 ∪ Ω2 ∪ Γ, where Γ = ∂Ω1 ∩ ∂Ω2 is a smooth hypersurface
in Rn. Suppose ui ∈ H1(Ωi), i = 1, 2 are such that u1 restricted to Γ agrees with u2
restricted to Γ (the restriction taken in the trace sense). Prove that the function

u(x) =

{
u1(x), for x ∈ Ω1

u2(x), for x ∈ Ω2

lies in the space H1(U), and identify the weak derivative Du.

3. (Evans 5.11) Suppose U ⊂ Rn is connected and u ∈W 1,p(U) satisfies

Du = 0 a.e. in U.

Prove that u is constant a.e. in U . (Hint: Mollify u, and use Theorem 3 from Section
6.5(b) from McOwen, or the “Properties of Mollifiers” theorem from Appendix C of
Evans.)

4. (Evans 5.4 – Suggested) (a) Prove that if u ∈ W 1,p(0, 1) for some 1 ≤ p < ∞, then
u is equal almost everywhere (a.e.) to an absolutely continuous function, and that u′

(which exists a.e.) belongs to Lp(0, 1).
Note: In measure theory, you are typically presented with a complicated definition of
“absolutely continuous” functions. Here, you can use the following fact as a charac-
terization1: Absolutely continuous functions are precisely those for which the Funda-
mental Theorem of Calculus applies. In particular, u is absolutely continuous on [a, b]

1In fact, this is equivalent to the complicated definition, and is sometimes even given as the definition.
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if and only if the pointwise derivative exists a.e. in (a, b) and satisfies u′ ∈ L1(a, b)
and

u(x) = u(a) +

∫ x

a
u′(y)dy

for all x ∈ [a, b].
(b) Prove directly that if u ∈W 1,p(0, 1) for some 1 < p <∞, then

|u(x)− u(y)| ≤ |x− y|1−1/p
(∫ 1

0
|u′(t)|pdt

)1/p

for a.e. x, y ∈ [0, 1]. Conclude that Sobolev functions in one-dimension are Hölder
continuous2, specifically that W 1,p(0, 1) ⊂ C0,1−1/p(0, 1).
Note: This is a one-dimensional version of Morrey’s inequality and is an example
of a Sobolev embedding theorem. We will study these embeddings in detail later, as
they form one of the cornerstones of the Sobolev theory.

5. Show that if u ∈ H1(R) = W 1,2(R), and if u′ denotes the weak derivative of u, then

u′(x) = lim
h→0

u(x+ h)− u(x)

h

where the limit is in the L2(R) sense.
Hint: First, notice that u is absolutely continuous (by the above problem), and hence
the fundamental theorem of calculus applies to u. Begin by showing that

u(x+ h)− u(x) =

∫ 1

0
u′(x+ th)hdt.

for all x, h ∈ R, and then use this identity to show that∥∥∥∥u′ − u(·+ h)− u
h

∥∥∥∥2
L2(R)

→ 0

as h→ 0. The result of Problem 1 above may be helpful for this last part: here, notice
that the result of Problem 1 can be extended to show for all f ∈ Lp(R), p ∈ [1,∞), we
have

lim
h→0
‖f(·+ h)− f‖Lp(R) = 0.

That is, boundedness of the domain was not necessary in Problem 1 above.

6. This exercise introduces you to the so-called “Sobolev Embedding” theorems in the
special case of Sobolev spaces of periodic functions. Such functions can be represented
as Fourier series, which makes their analysis significantly more straightforward than
for functions defined on arbitrary bounded domains we have been considering in class.

2See Section 6.5(a) of McOwen for definitions of the Hölder spaces.
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To begin, let n ≥ 1 and L > 0. We say a function u : Rn → R is L-periodic if

u(x+ Lej) = u(x) ∀ j = 1, 2, . . . n,

where the ej denote the standard unit basis vectors for Rn. It is clear that such an
L-periodic function is uniquely determined by its values on the n-dimensional cube
Q = [0, L]n denote an n-dimensional cube. We define the space of square-integrable
L-periodic functions as

L2
p(Q) =

{
u ∈ L2

loc(R) : u is L-periodic
}

equipped with the norm

‖u‖L2
p(Q) :=

(∫
Q
|u|2dx

)1/2

.

By basic Harmonic Analysis3 any function u ∈ L2
p(Q) can be represented by a Fourier

series, i.e. there exists constants {aj}j∈Zn such that

(0.1) u(x) =
∑
j∈Zn

aje
2πij·x/L with a−j = āj .

where this series converges in L2(Q). One can easily check (you do not need to show
the details here) that ∫

Q
|u|2dx = Lm

∑
j∈Zn

|aj |2,

a result known as Parseval’s identity.

With this in mind, we can formally start taking derivatives and find that, given a
multi-index α ∈ Nn we have

Dαu(x) =

(
2πi

L

)|α| ∑
j∈Zn

ajj
αe2πij·x/L

so that ∫
Q
|Dαu|2dx = Lm

(
2π

L

)2|α| ∑
j∈Zn

|aj |2|j2α|

Given any s ∈ N we can define the periodic Sobolev space Hs
p(Q) as the collection of

all functions in L2
p(Q) such that the norm

‖u‖Hs
p(Q) :=

∑
j∈Zn

(1 + |j|2s)|aj |2
1/2

3If there is such a thing :-)
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is finite. An important observation4 is then that if u ∈ Hs
p(Q) then the Fourier series

in (0.1) converges to u in Hs
p(Q). Notice, in particular, that this definition does not

actually require that s be a positive integer. As a result, we can consider the periodic
Sobolev spaces5 Hs

p(Q) for any s ≥ 0.

With the above set up, complete the following exercises:

(a) Show that if u ∈ Hs
p(Q) with s > n/2, then u ∈ L∞(Q) with

‖u‖L∞(Q) ≤ Cs‖u‖Hs
p(Q)

for some constant Cs > 0 independent of u. Conclude that u ∈ C0(Q).
Remark: Morally speaking, this shows that if a Sobolev function has “enough” deriva-
tives in L2, then it is in fact continuous. Using a simple induction, you could extend
this result to show Hs

p(Q) ⊂ Ck(Q) whenever s > n/2 + k.

(b) Show that if u ∈ Hs
p(Q) with 0 < s < n/2, then u ∈ Lq(Q) for all

q ∈
[
2,

n

(n/2)− s

)
.

Hint: You may use, without proof6, the fact that if {aj}j∈Zn ∈ `r for some r ∈ [1, 2]
then the function

u(x) =
∑
j∈Zn

aje
2πij·x/L

belongs to Lq(Q) with r−1 + q−1 = 1 and

‖u‖Lq(Q) ≤ C‖{aj}‖`r

for some constant C > 0 independent of u. Note in particular the restriction on r
implies q ≥ 2.
Remark: Morally speaking, this shows that Sobolev functions always have better than
expected integrability properties...

(c) (Suggested) Show that Hs
p(Q) is compactly embedded in L2

p(Q) for all 0 < s <∞.
That is, a bounded sequence {uk}∞k=1 in Hs

p(Q) has a subsequence that converges in
L2
p(Q).

Hint: First show that if {uk}∞k=1 is a bounded sequence in Hs
p(Q), then each Fourier

4You may use this without proof.
5This should be of interest to any student of Harmonic analysis, as it allows you to define fractional

order Sobolev spaces, which leads naturally to a basic class of Fourier multipliers and pseudo-differential
operators.

6The proof is nontrivial, relying on methods from complex analysis.
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coefficient of the sequence uk is uniformly bounded in k. Once you establish this, a
diagonal argument might be useful...
Remark: This is a periodic version of the Rellich-Kondrachov compactness theorem.
Note, however, that you can not directly invoke the Rellich-Kondrachov theorem from
class since here we allow non-integer values of s.

7. (Suggested) Let U ⊂ Rn be open and bounded with C1 boundary. Given u ∈
W 1,p(U), define E(u) : Rn → R by

E(u)(x) =

{
u(x), for x ∈ U
0, for x /∈ U.

Show that the mapping E : W 1,p
0 (U)→W 1,p(Rn) is well defined. That is, verify that

for u ∈ W 1,p
0 (U) one has E(u) ∈ W 1,p(Rn). Is the map E well defined from W 1,p(U)

to W 1,p(Rn)? Explain.
Discussion: Thus, by extending by zero outside U , any function in u ∈W 1,p

0 (U) can be
considered as a function in W 1,p(Rn). This is an example of an “Extension” theorem.

8. (Suggested) Give an example of a continuous function on [0, 1] which has classical
derivative defined almost everywhere, but which is not weakly differentiable. (Hint:
Consider functions which are continuous on [0, 1] but not absolutely continuous on
[0, 1].)
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