
Math 951 – Advanced PDE II
Homework 2 – Solutions!

Spring 2020

1. Let U ⊂ Rn be an open and bounded set with smooth boundary, and consider the
following Poincaré like inequality: Given any constant σ > 0, there exists a constant
C > 0 such that ∫

U
u2dx ≤ C

(∫
U
|Du|2dx+ σ

∫
∂U
|u|2dS

)
for all u ∈ H1(U), where here u|∂U is interpreted in the trace sense.

(a) Provide a direct proof of this fact, using that C∞(Ū) is dense in H1(U). To
receive full credit, it is not enough to simply prove for smooth functions on Ū
and then just say “by density, it holds on H1(U)”. You must show the details of
this final density argument.

(b) Provide another proof of this inequality using a proof by contradiction. (Hint:
It may help to look over our proof of Poincaré on W 1,p(U) here...)

Solution: (a) Suppose that u ∈ C∞(Ū). Since U is bounded, we have for any ε > 0,∫
U
u2dx = −

∫
U
xj

∂

∂xj

(
u2
)
dx+

∫
∂U
u2xjνj dS

≤ C
(∫

U
|u||Du|dx+

∫
∂U
u2dS

)
≤ C

(
‖u‖L2(U)‖Du‖L2(U) + ‖u‖2L2(∂U)

)
≤ C

(
ε‖u‖2L2(U) +

1

4ε
‖Du‖2L2(U) + ‖u‖2L2(∂U)

)
where the last inequality holds by the Cauchy with ε inequality |ab| ≤ εa2 + 1

4εb
2,

valid for any ε > 0. Choosing ε so that Cε < 1, we see that

‖u‖2L2(U) ≤ C
(
‖Du‖2L2(U) + ‖u‖2L2(∂U)

)
,

for some positive constant C > 0, which, by choosing C > 0 possibly larger, implies

‖u‖2L2(U) ≤ C
(
‖Du‖2L2(U) + σ‖u‖2L2(∂U)

)
.

For the general case u ∈ H1(U), recalling that C∞(Ū) is dense in H1(U) we can find
a sequence {uj}∞j=1 ⊂ C∞(Ū) such that uj → u in H1(U). Then for each j, we have

‖uj‖2L2(U) ≤ C
(
‖Duj‖2L2(U) + ‖uj‖2L2(∂U)

)
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for some constant C > 0 independent of j. Taking the limit as j → ∞, we clearly
have ‖uj‖L2(U) → ‖u‖L2(U) and ‖Duj‖L2(U) → ‖Du‖L2(U). Furthermore, by the Trace
theorem, we have that uj = Tuj on ∂U and, furthermore,

‖uj − T (u)‖L2(∂U) ≤ C‖uj − u‖H1(U).

Hence, uj → T (u) in L2(∂U) as j →∞, which completes the proof.

(b) Suppose that no such constant C > 0 exists. Then for all k ∈ N, there exists a
non-zero function vk ∈ H1(U) such that

‖vk‖L2(U) > k
(
‖Dvk‖L2(U) + ‖T (vk)‖L2(∂U)

)
.

Defining wk := vk
‖vk‖L2(U)

, it follows that ‖wk‖L2(U) = 1 and

‖Dwk‖L2(U) + ‖T (wk)‖L2(∂U) <
1

k

for all k ∈ N. In particular, the sequence {wk} is a bounded sequence in H1(U)
and hence there exists a function w ∈ L2(U) and a subsequence {wkj} such that
wkj → w in L2(U) by Rellich-Kondrachov, and notice that since ‖wkj‖L2(U) = 1 for
all j, ‖w‖L2(U) = 1.

However, it also follows that Dwkj → 0 in L2(U), and hence I claim that w must be
locally constant. To see this, simply notice that for all φ ∈ C∞c (U)∫

U
wDφ dx = lim

j→∞

∫
U
wkjDφ dx = 0

from which it follows that Dw = 0 in U , and hence w is a.e. equal to a constant
function on each connected component of U . Moreover, we also have that T (wkj )→ 0
in L2(U) and hence, since T : H1(U) → L2(∂U) is continuous and since clearly
w ∈ H1(U) and wkj → w in H1(U), we have

T (w) = lim
j→∞

T (wkj ) = 0

and hence w ∈ H1
0 (U). Recalling that w is a.e. equal to a constant function on each

connected component of U it follows that w = 0 a.e. in U , which contradicts the fact
that ‖w‖L2(U) = 1.

2



2. (Based on #5 in Section 6.6 of Evans) Let σ > 0 be a fixed constant and suppose
U ⊂ Rn is an open and bounded set with smooth boundary. Given f ∈ L2(Rn),
consider Poisson’s equation with Robin boundary conditions: −∆u = f in U,

∂u

∂ν
+ σu = 0 on ∂U.

The goal of this exercise is to verify the existence and uniqueness of a “weak” solution
of the above BVP.

(a) We say a function u ∈ H1(U) is a weak solution of the given BVP if∫
U
Du ·Dφ dx+ σ

∫
∂U
uφ dS =

∫
U
fφ dx

for all φ ∈ H1(U). Justify that this is a reasonable definition of a weak solution
for the given BVP by first supposing u ∈ C∞(Ū), and multiplying the PDE by
an arbitrary φ ∈ C∞(Ū), and integrating over U .

(b) Define the bilinear form B : H1(U)×H1(U)→ R by

B[v1, v2] :=

∫
U
Dv1 ·Dv2 dx+ σ

∫
∂U
v1v2 dS.

Show that B[·, ·] defines an inner product on H1(U). (Hint: Problem # 1 above
will be helpful here...)

(c) Verify that the inner product B[·, ·] generates a norm on H1(U) that is equivalent
to the standard one, i.e. show there exists a C > 1 such that

C−1‖v‖2H1(U) ≤ B[v, v] ≤ C‖v‖2H1(U)

for all v ∈ H1(U). Show then that the set H1(U) equipped with the norm
‖ · ‖∗ :=

√
B[·, ·] is a Hilbert space. (Hint: For this last part, all you really need

to check is that Cauchy sequences in (H1(U), ‖ · ‖∗) converge in (H1(U), ‖ · ‖∗).)
(d) Given f ∈ L2(U), show that the mapH1(U) 3 φ 7→

∫
U fφ dx defines a continuous

linear functional on the Hilbert space (H1(U), ‖ · ‖∗).
(e) Using the Riesz-Representation Theorem, verify that for every f ∈ L2(U), there

exists a unique weak solution u ∈ H1(U) of the given BVP.

Solution: (a) Suppose u ∈ C∞(Ū) is a smooth solution of the given BVP, and let
φ ∈ C∞(Ū) be arbitrary. Multiplying the PDE by φ and integrating over U gives∫

U
fφ dx = −

∫
U

∆u φ dx =

∫
U
Du ·Dφ−

∫
∂U
φDu · ν dS.
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From the boundary conditions, Du · ν = −σu on ∂U , which gives∫
U
fφ dx =

∫
U
Du ·Dφ+ σ

∫
∂U
uφdS.

Since C∞(Ū) is dense in H1(U), this justifies the given notion of a weak solution for
this problem.

(b) Clearly B[·, ·] defines a symmetric bilinear map on H1(U)×H1(U) and, further-
more, it is clear that B[u, u] ≥ 0 for all u ∈ H1(U). To see this defines an inner
product, we must verify that B[u, u] = 0 if and only if u = 0 in H1(U). Recalling
from Problem # 1 above that there exists a C > 0 such that B[u, u] ≥ C‖u‖L2(U) for
all u ∈ H1(U), it follows that if B[u, u] = 0 then u = 0 in L2(U), and hence u = 0 in
H1(U). Thus, B[·, ·] defines an inner product on H1(U).

(c) Using the Poincaré inequality in Problem # 1 again, we have by the definition of
B[·, ·] that

‖v‖2H1(U) = ‖v‖2L2(U) + ‖Dv‖2L2(U) ≤ CB[v, v] + ‖Dv‖2L2(U) ≤ (C + 1)B[v, v]

for some constant C > 0. To verify the other direction, notice that by the Trace
Theorem and the definition of the H1(U) norm we have

B[v, v] ≤
∫
U
|Dv|2dx+ C‖v‖2H1(U) ≤ (C + 1)‖v‖2H1(U).

It follows that the norm ‖ · ‖∗ defines a norm on H1(U) that is equivalent to the
standard one. To see then that (H1(U), ‖ · ‖∗) is a Hilbert space then, we must verify
that it is complete. To this end, let {vj} be a Cauchy sequence in (H1(U), ‖ · ‖∗) and
note, since ‖ · ‖∗ ≥ C‖ · ‖H1(U), it follows that {vj} is Cauchy in (H1(U), ‖ · ‖H1(U)).
Since H1(U) is complete with respect to its usual norm, it follows that the sequence
{vj} must converge in H1(U). However, the inequality ‖·‖∗ ≤ C‖·‖H1(U) implies that
convergence in (H1(U), ‖ · ‖H1(U)) implies convergence in (H1(U), ‖ · ‖∗) and thus, the
sequence {vj} must converge in (H1(U), ‖ · ‖∗). Hence, the space (H1(U), ‖ · ‖∗) is a
complete inner product space, i.e. a Hilbert space.

(d) Using the equivalence of the norm ‖ · ‖∗ with the standard ‖ · ‖H1(U) norm on
H1(U), given f ∈ L2(U) it follows that∣∣∣∣∫

U
fφ dx

∣∣∣∣ ≤ C‖f‖L2(U)‖φ‖H1(U) ≤ C‖f‖L2(U)‖φ‖∗

for all φ ∈ (H1(U), ‖·‖∗). Thus, the given mapping defines a bounded linear functional
on (H1(U), ‖ · ‖∗).
(e) By the Riesz-representation theorem (or, equivalently in this case, Lax-Milgram),
it follows that for each f ∈ L2(U) there exists a unique u ∈ (H1(U), ‖ · ‖∗) such that

B[u, φ] =

∫
U
fφ dx
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for all φ ∈ (H1(U), ‖ · ‖∗). Using the equivalence of the norms ‖ · ‖H1(U) and ‖ · ‖∗
one last time, it follows that the above function u ∈ H1(U) is a weak solution of the
given BVP.

3. (Based on #4 in Section 6.2 of McOwen) Let µ ∈ R be non-zero and consider the
Dirichlet problem

−∆u+ µu = f in U

u = 0 on ∂U

where U ⊂ Rn is open and bounded and f ∈ L2(U) is given.

(a) Derive the appropriate weak formulation of this problem for u ∈ H1
0 (U).

(b) Set

λ1 := inf
u∈H1

0 (U)

∫
U |Du|

2dx∫
U u

2dx
.

Prove that λ1 > 0.

(c) Prove that if µ > −λ1, then the above BVP has a unique weak solution u ∈
H1

0 (U) for each f ∈ L2(U).

Solution: (a) Suppose u is a smooth solution of the given BVP. Given φ ∈ C∞c (U),
multiplying the PDE by φ and integrating by parts implies that u satisfies∫

U
Du ·Dφ dx+ µ

∫
U
uφ dx =

∫
U
fφ dx

for all φ ∈ C∞c (U). Since the left hand side is well defined for all u, φ ∈ H1
0 (U), and

the right hand side is defined for f, φ ∈ L2(U) the weak formulation is as follows:
given f ∈ L2(U), find a u ∈ H1

0 (U) such that∫
U
Du ·Dφ dx+ µ

∫
U
uφ dx =

∫
U
fφ dx

for all φ ∈ H1
0 (U).

(b) The Poincaré inequality on H1
0 (U) implies there exists a constant C > 0 such

that ∫
U
u2dx ≤ C

∫
U
|Du|2dx

for all u ∈ H1
0 (U). Rewriting, it follows that

1

C
≤
∫
U |Du|

2dx∫
U u

2dx

for all u ∈ H1
0 (U). It follows that λ1 ≥ 1

C > 0.
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(c) Define the bilinar form B : H1
0 (U)×H1

0 (U)→ R by

B[u, v] :=

∫
U
Du ·Dv dx+ µ

∫
U
uv dx.

Using Cauchy-Schwartz, we find that

|B[u, v]| ≤ ‖Du‖L2(U)‖Dv‖L2(U)+µ‖u‖L2(U)‖v‖L2(U) ≤ (1+max(µ, 0))‖u‖H1(U)‖v‖H1(U)

so that B is bounded. To see that B is coercive, first observe that if µ > 0 then we
clearly have

B[u, u] ≥ min{1, µ}‖u‖2H1(U)

so that B is coercive for all µ > 0: note all such µ trivially satisfy µ + λ1 > 0. For
µ ≤ 0, notice the definition of λ1 and the fact that λ1 > 0 implies that∫

U
u2 dx ≤ 1

λ1

∫
U
|Du|2dx

for all u ∈ H1
0 (U). Thus, if µ ≤ 0 then for a given u ∈ H1

0 (U) we have

B[u, u] =

∫
U
|Du|2dx+ µ

∫
U
u2dx

≥
(

1 +
µ

λ1

)∫
U
|Du|2dx (since µ ≤ 0)

≥ C
(

1 +
µ

λ1

)
‖u‖2H1(U)

for some C > 0. It follows that B is coercive for all µ ≥ −λ1.

Finally, noting that Cauchy-Schwartz implies

H1
0 (U) 3 φ 7→

∫
U
fφ dx ∈ R

is a bounded linear functional on H1
0 (U), it follows from the Lax-Milgram theorem

that if µ > −λ1, then for each f ∈ L2(U) there exists a unique u ∈ H1
0 (U) such that

B[u, φ] =

∫
U
fφ dx

for all φ ∈ H1
0 (U), and hence there exists a unique weak solution of the given BVP.
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4. Let U ⊂ Rn be a smooth, bounded, connected open set. Let Γ1, Γ2 be two disjoint
subsets of ∂U of positive (n− 1)−dimensional measure such that Γ1 ∪ Γ2 = ∂U . (For
example, in R2 U might be an annulus.) Define the set

H :=
{
φ ∈ C∞(Ū) : dist(sptφ,Γ1) > 0

}
,

and define the Hilbert space H̃1(U) as the closure of H in the standard H1(U) norm.

(a) Prove the following Poincaré inequality for functions in H̃1(U): ∃C > 0 such
that ∫

U
u2dx ≤ C

∫
U
|Du|2dx ∀u ∈ H̃1(U).

(b) Consider the following problem: Given f ∈ L2(U), find u ∈ H̃1(U) such that∫
U
Du ·Dφ dx =

∫
U
fφ dx ∀φ ∈ H̃1(U).

Prove the existence of a unique solution of this problem.

(c) Carefully explain what boundary value problem (i.e. PDE and boundary condi-
tions) you solved in the weak sense in part (b)?

Solution: (a) Suppose the stated inequality is false. Then for each k ∈ N there exists
a non-zero uk ∈ H̃1(U) such that∫

U
u2
kdx > k

∫
U
|Duk|2dx.

Defining wk := uk
‖uk‖L2(U)

it follows that {wk} is a bounded sequence in H̃1(U) and

satisfies ∫
U
|Dwk|2dx <

1

k

for each k ∈ N. Since H̃1 ⊂ H1(U), there exists a subsequence {wkj} which converges
in L2(U) to some function w ∈ L2(U) with ‖w‖L2(U) = 1.

Next, I claim that w is weakly differentiable with Dw = 0 in U . To see this, notice
that since wkj → w in L2(U) we have for all φ ∈ C∞c (U)∣∣∣∣∫

U
vDφ dx

∣∣∣∣ = lim
j→∞

∣∣∣∣∫
U
Dwkjφ dx

∣∣∣∣ ≤ lim
j→∞

‖φ‖L2(U)

kj
= 0.

Thus, since U is connected it follows that w is constant in U . But, since H̃1(U) is
closed it follows that T (w) = 0 on Γ1 and hence w = 0 in U . This is a contradiction
since we have already shown that ‖w‖L2(U) = 1.
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(b) By part (a), the functional (u, v) :=
∫
U Du · Dv dx induces a norm on H̃1(U)

which is equivalent to the standard H1(U) norm. In particular, since the map

H1(U) 3 v 7→
∫
U
fv dx ∈ R

is a bounded linear functional on H1(U), it follows that it is a bounded linear func-
tional on H̃1(U) and hence the Riesz-Representation Theorem implies the existence
of a unique u ∈ H̃1(U) such that∫

U
fv dx =

∫
U
Du ·Dv dx ∀v ∈ H̃1(U).

Thus, for each f ∈ L2(U) there exists a unique weak solution of the given problem.

(c) First, notice by continuity of the trace operator that T (u) = 0 on Γ1 for all
u ∈ H̃1(U). Furthermore, supposing that u ∈ C2(Ū) an application of integration by
parts yields ∫

U
(−∆u+ f)φ dx+

∫
Γ2

φ
∂u

∂n
dS = 0

for every φ ∈ C∞(Ū), say. Setting both integrals to zero independently implies that
u any smooth solution u of the problem in part (b) must satisfy the boundary value
problem 

−∆u = f in U
u = 0 on Γ1
∂u
∂n = 0 on Γ2,

i.e. u ∈ H1(U) is a weak solution of Poisson’s problem with mixed Dirichlet–Neumann
boundary conditions.
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