
Math 951 – Advanced PDE II
Homework 3: Due Friday, March 27 at 4pm

Spring 2020

Turn in solutions to all problems. Working together in groups is HIGHLY suggested,
although each person from the group must submit their own solutions.

1. In this exercise, we consider the solvability of the Laplacian operator equipped with
Neumann boundary conditions. In the process, we will analyze the Neumann eigen-
values and eigenfunctions for the Laplacian operator on a bounded domain.

To begin, let U ⊂ Rn be open and bounded with smooth boundary and consider the
problem

(0.1)

{
−∆u = f in U

∂u
∂ν = 0 on ∂U

where f ∈ L2(U) is given and ν denotes the outer unit normal vector to ∂U . We say
that u ∈ H1(U) is a weak solution of the above Neumann BVP if

(0.2) B[u, v] =

∫
U
fv dx ∀v ∈ H1(U)

where B : H1(U)×H1(U)→ R is the bilinear form B[u, v] :=
∫
U Du ·Dv dx.

(a) Recall that when dealing with Dirichlet boundary conditions we searched for
solutions in H1

0 (U), thus imposing the desired boundary condition in the trial
space. However, in the above Neumann problem, it is not immediately clear how
the boundary condition ∂u

∂ν = 0 on ∂U is showing up in our problem: after all,
we are not imposing it in the trial space H1(U).

To reconcile this, assume that u ∈ C2(Ū) satisfies B[u, v] =
∫
U fv dx for all v ∈

C2(Ū), and that u satisfies −∆u = f classically in U . Use the weak formulation
to show that ∫

∂U
v
∂u

∂ν
dS = 0

for all v ∈ C2(Ū). From this, conclude that ∂u
∂ν = 0 on ∂U . That is, although the

boundary condition is not directly imposed in the trial space, it must inherently
hold from the weak formulation. Boundary conditions that arise from the weak
formulation in this way (and are not imposed explicitly by the Hilbert space) are
called natural boundary conditions.

(b) We now turn to studying the solvability of (0.1). First, show that a necessary1

condition for the existence of weak solutions of the BVP (0.1) is that
∫
U f dx = 0.

1We will see below that this condition is also a sufficient condition for existence, but that uniqueness
fails: solutions are only unique up to additive constants!
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(c) Prove that the bilinear form B defined in (0.2) is bounded, but not coercive
on H1(U). (Hint: To show it is not coercive, it is enough to find a nonzero
u ∈ H1(U) such that B[u, u] = 0. Why? )

(d) Prove that the bilinear form B1 : H1(U)×H1(U)→ R defined by

B1[u, v] := B[u, v] +

∫
U
uv dx

is bounded and coercive on H1(U). Conclude then that for each f ∈ L2(U) there
exists a unique u ∈ H1(U) such that

(0.3) B1[u, v] =

∫
U
fv dx ∀v ∈ H1(U).

(e) Continuing, for each f ∈ L2(U) denote the unique function u ∈ H1(U) satisfying
(0.3) by u = S1(f). Prove that S1 : L2(U)→ H1(U) is a bounded linear operator.

(f) Prove that S1 : L2(U)→ L2(U) is compact and self-adjoint.

(g) Prove that S1 has a countably infinite decreasing sequence of non-zero eigenvalues
of finite multiplicity such that, when listed with respect to multiplicity,

1 = λ1 > λ2 ≥ λ3 ≥ . . .→ 0

and that N(S1−λ1I) = span{1}. Moreover, show that the corresponding eigen-
functions φk satisfying S1φk = λkφk may be chosen to form an orthonormal basis
of L2(U) and an orthogonal basis of H1(U) with respect to the inner product
B1[·, ·].

(h) Conclude that that the Neumann eigenvalues {µj} of the operator −∆ form an
increasing sequence such that, when listed with respect to multiplicity,

0 = µ1 < µ2 ≤ µ3 ≤ . . .→∞

and that the corresponding eigenfunctions ψk ∈ H1(U) may be chosen to form
an orthonormal basis of L2(U) and an orthogonal (with respect to inner product
B1[·, ·]) basis of H1(U), where we are assuming −∆ψj = µjψj weakly in U .
Furthermore, show that with the above normalizations we have

ψ1 =
1

|U |1/2
,

where |U | denotes the Lebesgue measure of the domain U .

(i) Finally, let f ∈ L2(U) be such that
∫
U f dx = 0. Prove that any weak solution

of the Neumann problem

(0.4)

{
−∆u = f in U

∂u
∂n = 0 on ∂U
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can be expressed as

(0.5) u = a1 +
∞∑
j=2

〈f, ψj〉L2(U)

µj
ψj

with a1 arbitrary and the series converging in H1(U). Moreover, show that any
function of the form (0.5) is in fact a weak solution of (0.4).

Remark: The lack of uniqueness in the above Neumann problem is due to the fact
that µ1 = 0 is an eigenvalue of the Neumann Laplacian with constant eigenfunction.
Thus, solutions are unique in the quotient space H := H1(U)/{ψ1} = {g ∈ H1(U) :∫
U g(x)dx = 0}. An alternate way to prove existence of solutions when

∫
U f = 0 then

is to prove the bilinear form B[·, ·] defined in (0.2) is coercive on H, guaranteeing the
existence of a unique weak solution in the quotient space H, and then verifying this
implies existence of solutions in H1(U) unique up to additive constants.

2. Let U ⊂ Rn be open and bounded, and let {φj}∞j=1 denote the Dirichlet eigenfunctions

of the operator −∆ defined on U . That is, for a fixed j ∈ N, the functions φj ∈ H1
0 (U)

satisfy the BVP {
−∆φj = λjφj , in U,

φj = 0 on ∂U,

where λj is the jth eigenvalue of −∆ on U . Furthermore, assume that the φj are
normalized so that ‖φj‖L2(U) = 1. Fix k ∈ N and let f ∈ L2(U) be such that∫
U fφk dx 6= 0. Given a real number ε 6= 0 sufficiently small, show there exists a

unique weak solution uε ∈ H1
0 (U) to the BVP

(0.6)

{
−∆u = (λk + ε)u+ f in U

u = 0 on ∂U

and that this unique solution satisfies the estimate

‖uε‖L2(U) ≥
∣∣∫
U fφk dx

∣∣
|ε|

.

Remark: Note, by the Fredholm Alternative, the problem (0.6) has no solution
when ε = 0. This exercise thus analyzes the behavior of the weak solution operator
associated to (0.6) in the limit ε→ 0.

3



NOTE: In the next two exercises, we will extend the interior elliptic regularity theory devel-
oped in class to semilinear equations on open, bounded domains. For this, you need
to be familiar with the Gagliardo–Nirenberg–Sobolev inequality and its consequences,
which is contained in Theorem 5(a) of Section 6.5 in McOwen (alternatively, see The-
orems 5.6.1 and 5.6.2 in Evans). The point of these theorems is that if U ⊂ Rn is
open and bounded and u ∈W 1,p(U) with 1 ≤ p < n, then u has better than expected
integrabilty: in particular, it belongs to Lq(U) for all 1 ≤ q < np/(n− p). In contrast
to the linear case, where Poincaré is sufficient, these “Sobolev embedding theorems”
are crucial elements of nonlinear PDE theory.

3. Consider a function f : R → R satisfying the condition |f(t)| ≤ |t|3 for all t ∈ R and
let U ⊂ R3 be an open and bounded set. Prove that if u ∈ H1(U) is a weak solution
of the semilinear elliptic PDE2

−∆u = f(u) in U

then in fact we have u ∈ H2
loc(U). In particular, prove that for every V b U we have

u ∈ H2(V ) and that there exists a constant C > 0 independent of u such that

‖u‖H2(V ) ≤ C‖u‖H1(U)

(
1 + ‖u‖2H1(U)

)
.

4. Let U ⊂ R3 be open and bounded with smooth boundary and let f ∈ C∞(R) be
given. Suppose that u ∈ H1(U) is a weak solution of the semilinear elliptic PDE

−∆u = f(u) in U

and that, moreover, there exists a constant M > 0 such that ‖u‖L∞(U) ≤ M . Prove
that in fact one has u ∈ C2(U) and hence u is a classical solution of the PDE in the
domain U .

5. (EXTRA CREDIT!!!) Consider the operator K : L2(Rn)→ H1(Rn) defined by K :=
(−∆ + I)−1. The aim of this exercise is to prove that although K is a bounded linear
operator from L2(Rn) into H1(Rn) (as guaranteed by the first existence theorem), it
is NOT a compact operator from L2(Rn) into itself3.

(a) First, fix φ ∈ C∞c (Rn) and consider a sequence {aj} ⊂ Rn such that |aj | → ∞ as
j →∞. Prove that the sequence of functions {φj} defined by φj(x) := φ(x− aj)
is bounded in L2(Rn) and converges weakly4 to zero to zero as j →∞.

2By a weak solution, we mean a function u ∈ H1(U) such that
∫
U
Du ·Dv dx =

∫
U
f(u)v dx for every

v ∈ H1(U).
3Thus, weak solution operators for uniformly elliptic PDE need not be compact if posed on an unbounded

domain.
4Recall, a sequence {fn} in a Hilbert space H converges weakly to f ∈ H, denoted fn ⇀ f , if F (fn) →

F (f) as n→∞ for every F ∈ H∗. In the setting of problem #6(a) then, we have φj ⇀ 0 if
∫
U
φjv dx→ 0

for every v ∈ L2(Rn).
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(b) Next, prove the following general theorem: if H is a Hilbert space and if M
is a bounded, linear, compact operator then given any sequence {uk} which
converges weakly to u in H, we have Muk → Mu strongly in H. That is,
compact operators on Hilbert spaces upgrade weak convergence to strong (norm)
convergence. (Hint: A fundamental result of functional analysis, known as the
Banach-Steinhaus Theorem, or principle of uniform boundedness, implies that
all weakly convergent sequences in a Banach space are bounded.)

(c) Prove that, if K ∈ L(L2(Rn)) were compact, then Kφj → 0 in H1(Rn). (Hint:
Here, use the fact that, by construction, the range of K is actually contained in
H1(Rn).)

(d) Still assuming that K is compact, use the fact that the bilinear form B[u, v] :=∫
U (Du ·Dv + uv)dx defined on H1(Rn) ×H1(Rn) is bounded and the result of

part (c) to derive a contradiction.
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