
Math 951 – Advanced PDE II
Homework 3 – Solutions!

Spring 2020

1. In this exercise, we consider the solvability of the Laplacian operator equipped with
Neumann boundary conditions. In the process, we will analyze the Neumann eigen-
values and eigenfunctions for the Laplacian operator on a bounded domain.

To begin, let U ⊂ Rn be open and bounded with smooth boundary and consider the
problem

(0.1)

{
−∆u = f in U

∂u
∂n = 0 on ∂U

where f ∈ L2(U) is given. We say that u ∈ H1(U) is a weak solution of the above
Neumann BVP if

(0.2) B[u, v] =

∫
U
fv dx ∀v ∈ H1(U)

where B : H1(U)×H1(U)→ R is the bilinear form B[u, v] :=
∫
U Du ·Dv dx.

(a) When dealing with Dirichlet boundary conditions, we searched for solutions in
H1

0 (U), thus imposing the desired boundary conditions in the trial space. How-
ever, in the above Neumann problem, it is not immediately clear how the bound-
ary condition ∂u

∂ν = 0 on ∂U is showing up in our problem: after all, we are not
imposing it in the trial space H1(U).

To reconcile this, assume that u ∈ C2(Ū) satisfies B[u, v] =
∫
U fv dx for all v ∈

C2(Ū), and that u satisfies −∆u = f classically in U . Use the weak formulation
to show that ∫

∂U
v
∂u

∂ν
dS = 0

for all v ∈ C2(Ū). From this, conclude that ∂u
∂ν = 0 on ∂U . That is, although the

boundary condition is not directly imposed in the trial space, it must inherently
hold from the weak formulation. Boundary conditions that arise from the weak
formulation in this way (and are not imposed explicitly by the Hilbert space) are
called natural boundary conditions.

(b) We now turn to studying the solvability of (0.1). First, show that a necessary1

condition for the existence of solutions of the BVP (0.1) is that
∫
U f dx = 0.

(c) Prove that the bilinear form B defined in (0.2) is bounded, but not coercive.
(Hint: To show it is not coercive, it is enough to find a nonzero u ∈ H1(U) such
that B[u, u] = 0. Why? )

1We will see below, among other things, that this condition is also a sufficient condition for existence,
but that uniqueness fails: solutions are only unique up to additive constants!
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(d) Prove that the bilinear form B1 : H1(U)×H1(U)→ R defined by

B1[u, v] := B[u, v] +

∫
U
uv dx

is bounded and coercive on H1(U). Conclude then that for each f ∈ L2(U) there
exists a unique u ∈ H1(U) such that

(0.3) B1[u, v] =

∫
U
fv dx

for all v ∈ H1(U).

(e) Continuing, for each f ∈ L2(U) denote the unique function u ∈ H1(U) satisfying
(0.3) by u = S1(f). Prove that S1 : L2(U)→ H1(U) is a bounded linear operator.

(f) Prove that S1 : L2(U)→ L2(U) is compact and self-adjoint.

(g) Show then that S1 has a countably infinite decreasing sequence of non-zero eigen-
values of finite multiplicity such that, when listed with respect to multiplicity,

1 = λ1 > λ2 ≥ λ3 ≥ . . .→ 0

and that N(S1 − λ1I) = Rspan{1}. Moreover, show that the corresponding
eigenfunctions φk satisfying S1φk = λkφk form an orthonormal basis of L2(U)
and an orthogonal basis of H1(U) with respect to the inner product B1[·, ·].

(h) Conclude that that the Neumann eigenvalues {µj} of the operator −∆ form an
increasing sequence such that, when listed with respect to multiplicity,

0 = µ1 < µ2 ≤ µ3 ≤ . . .→∞

and that the corresponding eigenfunctions ψk ∈ H1(U) form an orthonormal ba-
sis of L2(U) and an orthogonal (with respect to inner product B1[·, ·]) of H1(U),
where we are assuming −∆ψj = µjψj weakly in U . Furthermore, show that we
can take

ψ1 =
1

|U |1/2
,

where |U | denotes the Lebesgue measure of the domain U .

(i) Finally, let f ∈ L2(U) be such that
∫
U f dx = 0. Prove that any weak solution

of the Neumann problem

(0.4)

{
−∆u = f in U

∂u
∂n = 0 on ∂U

can be expressed as

(0.5) u = a1 +
∞∑
j=2

〈f, ψj〉L2(U)

µj
ψj

with a1 arbitrary and the series converging in H1(U). Moreover, show that any
function of the form (0.5) is in fact a weak solution of (0.4).
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Solutions: (a) Suppose u ∈ C2(Ū) is a weak solution of our PDE (of course, in
general, u is not so smooth). Starting from the weak formlation

∫
U Du · Dv dx =∫

U fv dx, we integrate by parts to obtain

−
∫
U
v∆u dx+

∫
∂U
v
∂u

∂ν
dS =

∫
U
vf dx

for all v ∈ C2(Ū). Since u ∈ C2(Ū), u satisfies −∆u = f a.e. in U , and hence∫
∂U
v
∂u

∂ν
dS = 0

for all v ∈ C2(Ū). It follows that ∂u
∂ν = 0 on ∂U , which justifies our saying that

the Neumann boundary condition holds in the weak sense, because we have shown
that if u is smooth enough on Ū then the Neumann condition actually holds classically.

(b) If u ∈ H1(U) is a weak solution of the Neumann problem then∫
U
Du ·Dv dx =

∫
U
fv dx

for all v ∈ H1(U). In particular, taking v = 1 (since U is bounded) we get∫
U
f dx = 0.

Thus, if the Neumann problem has a weak solution then it must be the case that∫
U f dx = 0.

(c) The bilinear form B[·, ·] is clearly bounded on H1(U) since

|B[u, v]| ≤ ‖Du‖L2(U)‖Dv‖L2(U) ≤ ‖u‖H1(U)‖v‖H1(U)

for all u, v ∈ H1(U). However, since 1 ∈ H1(U) and B[1, 1] = 0 it follows that B[·, ·]
can not be coercive on H1(U), i.e. there does not exist a constant C > 0 such that
B[u, u] ≥ C‖u‖2H1(U) for all u ∈ H1(U).

(d) Boundedness of B1 on H1(U)×H1(U) follows as in part (a). Moreover, coercivity
is clear since

B1[u, u] =

∫
U

(
u2 + |Du|2

)
dx = ‖u‖2H1(U)

for all u ∈ H1(U). Thus, by the Riesz-Representation Theorem (or Lax-Milgram if
you prefer), for every f ∈ L2(U) there exists a unique weak solution u ∈ H1

0 (U).
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(e) The operator S1 is clearly linear since B[·, v] is linear for each v ∈ H1(U). More-
over, by definition of S1 for every f ∈ L2(U) we have

‖S1(f)‖2H1(U) = B1[S1(f), S1(f)] =

∫
U
fS1(f) dx ≤ ‖f‖L2(U)‖S1(f)‖L2(U)

and hence it follows that
‖S1(f)‖H1(U) ≤ ‖f‖L2(U)

for all f ∈ L2(U), i.e. S1 : L2(U)→ H1(U) is a bounded linear operator.

(f) First, we show that S : L2(U)→ L2(U) is self adjoint. To this end, fix f, g ∈ L2(U)
and notice that

〈S1(f), g〉L2(U) = 〈g, S1(f)〉L2(U) = B1[S1(g), S1(f)]

since S1(f) ∈ H1(U) and S1(g), by definition, satisfies

B1[S1(g), v] =

∫
U
gv dx ∀v ∈ H1(U).

Since B is symmetric, it follows as above that

B1[S1(g), S1(f)] = B1[S1(f), S1(g)] = 〈f, S1(g)〉L2(U)

and hence we have 〈S1(f), g〉L2(U) = 〈f, S1(g)〉L2(U). Since f, g ∈ L2(U) were arbitrary,

it follows that S1 is self-adjoint on L2(U).
Next, to see that S1 : L2(U)→ L2(U) is compact, let {uk} be a bounded sequence in
L2(U). Then since S1 is a bounded map into H1(U) we have

‖S1(uk)‖H1(U) ≤ ‖uk‖L2(U)

so that the sequence {S1(uk)} is a bounded sequence in H1(U). Since U ⊂ Rn is open
and bounded with a smooth boundary, Rellich-Kondrachov implies that there exists a
subsequence {S1(ukj )} which converges in L2(U), and hence S1 is a compact operator
from L2(U) into L2(U).

(g) By part (f) we can apply the spectral theorem for self-adjoint compact operators to
the operator S1 : L2(U)→ L2(U) to conclude that to get the existence of a countable
number of eigenvalues {λj} corresponding eigenfunctions φj . Indeed, σp(S1) 6= ∅ since
either ±‖S1‖ ∈ σp(S1). Furthermore, 0 ∈ σ(S1) \ σp(S1) since if S1(φ) = 0 then by
definition we have

0 = B1[S1(φ), v] =

∫
U
φv dx

for all v ∈ H1(U), and hence we must have φ = 0. Thus, 0 can not be an eigenvalue of
S1 and hence the set σp(S1) must be countably infinite since, if not, it would be finite
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and hence the corresponding total eigenspace would be finite-dimensional. However,
this can not be since we have shown that N(S1 − λjI) is finite dimensional for each
λj ∈ σp(S1) (since 0 /∈ σp(S1)) and that, since S1 is compact and self adjoint, the
total eigenspace ⋃

j

N (S1 − λjI)

should be dense inH1(U), which is infinite dimensional. Thus, by the spectral theorem
the set σp(S1) consists of a countably infinite sequence of non-zero real numbers {λj}
which form a sequence converging to zero as j →∞.

Next, we prove that σp(S1) ⊂ (0, 1]. To this end, notice that if S1(φj) = λjφj then by
the coercivity of B1 found in part (b) we have

‖φj‖2H1(U) = B1[φj , φj ] =
1

λj
B1[Sjφj , φj ] =

1

λj

∫
U
φ2jdx

and hence

0 < λj =
‖φj‖2L2(U)

‖φj‖2H1(U)

≤ 1

as claimed. Thus, we can order the eigenvalues of S1 as

1 ≥ λ1 ≥ λ2 ≥ λ3 ≥ . . .→ 0.

Next, I claim that N(S1 − I) = span{1} so that λ1 = 1 is a simple eigenvalue of S1,
completing the proof. To see this, notice that λ = 1 is clearly an eigenvalue of S1
since for any non-zero α ∈ R we have

B1[S1(α), v] = α

∫
U
v dx = B1[α, v] ∀v ∈ H1(U).

and hence S1(α) = α. Thus, span{1} ⊂ N(S1 − I). To prove the reverse inclusion,
notice that if S1(φ) = φ then by above we have

‖φ‖2L2(U) = B1[φ, φ] = B1[S1(φ), φ] = ‖φ‖2H1(U)

and hence it must be that ‖Dφ‖L2(U) = 0, i.e. φ must be a constant function. Thus,
we conclude that N(S1 − I) = span{1} and hence the eigenvalue λ1 = 1 is a simple
eigenvalue of S1.

Finally, it follows directly from the spectral theorem that we can choose the {φj} to
be an orthonormal basis of L2(U). To see that it forms an orthogonal basis of H1(U)
with respect to the inner product B1, first notice that for all j, k ∈ N

λjB1[φj , φk] = B1[S1(φj), φk] =

∫
U
φjφk dx
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and hence orthogonality with respect to B1[·, ·] follows by orthogonality in L2(U). To
show {φj} is a basis of H1(U), notice that if u ∈ H1(U) is such that B[u, φj ] = 0 for
all j ∈ N, then we must have

0 = B[u, φj ] =
1

λj
B[u, S1(φj)] =

1

λj

∫
U
uφj dx

for all j ∈ N and hence, since {φj} is a basis in L2(U) it follows that u = 0 in L2(U).
Hence, if

M := span{φj : j ∈ N}H
1(U)

it follows that M⊥ = {0} so that M = H1(U), i.e. the set {φj} must be a basis for
H1(U).

(h) First, notice that S1(φ) = λφ for some λ 6= 0 if and only if we have for all
v ∈ H1(U)

B[φ, v] +

∫
U
φv dx = B1[φ, v] =

1

λ
B1[S1(φ), v] =

1

λ

∫
U
φv dx,

which in turn holds if and only if φ is a weak solution of the problem{
−∆u =

(
1
λ − 1

)
u in U

∂u
∂n = 0 on ∂U.

Thus, it follows that the Neumann eigenvalues of −∆ are exactly the values

µj :=

(
1

λj
− 1

)
.

In particular, it follows that the Neumann eigenvalues of −∆ form a countable se-
quence {µj} such that

0 = µ1 < µ2 ≤ µ3 ≤ . . .→∞

with corresponding eigenfunctions {φj}, i.e. the Neumann eigenfunction of −∆ corre-
sponding to the eigenvalues µj is precisely the eigenfunction φj corresponding to the
eigenvalue λj of the operator S1. The proof of this part is complete by noting that
the spectral theorem implies the set {φj} is an orthonormal basis of L2(U). As such,
the constant function φ1 must be equal to |U |−1/2.

(i) Let f ∈ L2(U) satisfy
∫
U f dx = 0 and let u ∈ H1(U) be a weak solution to the

problem

(0.6)

{
−∆u = f in U

∂u
∂n = 0 on ∂U.
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Since u ∈ H1(U) and since {φj} is an orthogonal basis of H1(U) with respect to the
inner product B1[·, ·], it follows that we can find constants {aj} and {dj} so that

u =
∞∑
j=1

ajφj , and f =
∞∑
j=1

djφj

with the series for u converging in H1(U) and the series for f converging in L2(U).
Since u is a weak solution of (0.6) it follows that

B[u, v] =

∫
U
fv dx ∀v ∈ H1(U)

and hence that

(0.7) B1[u, v] =

∫
U

(f + u)v dx ∀v ∈ H1(U).

Using the above expansion then, we have

B1[u, v] =

∞∑
j=1

ajB1[φj , v] =

∞∑
j=1

aj
λj
B1[S1(φj), v] =

∞∑
j=1

aj
λj

∫
U
φjv dx

and, similarly, that ∫
U

(f + u) v dx =
∞∑
j=1

(dj + aj)

∫
U
φjv dx

Therefore, using (0.9) it follows that

∞∑
j=1

(aj − λj(dj + aj))

∫
U
φjv dx = 0

for all v ∈ H1(U) and hence for each j ∈ N we must have

(1− λj)aj = λjdj .

Since λ1 = 1 and d1 = 0 it follows that a1 can be chosen arbitrary. Furthermore, since

1 > λ2 ≥ λ2 ≥ . . .→ 0

it follows that the solution u must take the form

(0.8) u = a1 +
∞∑
j=2

λjdj
1− λj

φj = a1 +
∞∑
j=2

dj
µj
φj

with a1 arbitrary and the series converging in H1(U), as claimed.
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To complete the proof, we must show that any function of the form (0.8) is in fact
a weak solution of (0.6). To this end, let v ∈ H1(U) be arbitrary and notice by
continuity of the map

H1(U) 3 w 7→ B[w, v]

we find that

B[u, v] = a1B[1, v] +
∞∑
j=1

dj
µj
B[φj , v]

Since B[1, v] = 0 and for j ≥ 2

B[φj , v] = B1[φj , v]−
∫
U
φjv dx

=
1

λj
B1[S1(φj), v]−

∫
U
φjv dx

=

(
1

λj
− 1

)∫
U
φjv dx

= µj

∫
U
φjv dx,

it follows then that

B[u, v] =
∞∑
j=1

dj

∫
U
φjv dx =

∫
U

 ∞∑
j=1

djφj

 v dx =

∫
U
fv dx

for all v ∈ H1(U). Therefore, u must be a weak solution of (0.6) as claimed.

2. Let U ⊂ Rn be open and bounded, and let {φj}∞j=1 denote the Dirichlet eigenfunctions

of the operator −∆ defined on U . That is, for a fixed j ∈ N, the functions φj ∈ H1
0 (U)

satisfy the BVP {
−∆φj = λjφj , in U,

φj = 0 on ∂U,

where λj is the jth eigenvalue of −∆ on U . Furthermore, assume that the φj are
normalized so that ‖φj‖L2(U) = 1. Fix k ∈ N and let f ∈ L2(U) be such that∫
U fφk dx 6= 0. Given a real number ε 6= 0 sufficiently small, show there exists a

unique weak solution uε ∈ H1
0 (U) to the BVP

(0.9)

{
−∆u = (λk + ε)u+ f in U

u = 0 on ∂U

and that this unique solution satisfies the estimate

‖uε‖L2(U) ≥
∣∣∫
U fφk dx

∣∣
|ε|

.
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Solution: First, note that since σ(−∆) is a discrete subset of R, for a fixed k ∈ N
there is an ε0 > 0 such that λk + ε ∈ ρ(−∆) for all 0 < |ε| < ε0. That is, for ε
sufficiently small, the stated BVP has a unique weak solution for each f ∈ L2(U).

Denoting this weak solution by u, it follows that∫
U
Du ·Dφk dx = (λk + ε)

∫
U
uφk dx+

∫
U
fφk dx.

Since φk solves −∆φk = λkφk, it follows that
∫
U Du ·Dφ dx = λk

∫
U uφk dx so that

the above equality implies

ε

∫
U
uφk dx = −

∫
U
fφk dx.

Since ‖φk‖L2(U) = 1, it follows by Cauchy-Schwarz that∣∣∣∣∫
U
fφk dx

∣∣∣∣ ≤ |ε| · ‖u‖L2(U)

as claimed.

3. Consider a function f : R → R satisfying the condition |f(t)| ≤ |t|3 for all t ∈ R and
let U ⊂ R3 be an open and bounded set. Prove that if u ∈ H1(U) is a weak solution
of the semilinear elliptic PDE2

−∆u = f(u) in U

then in fact we have u ∈ H2
Rloc(U). In particular, prove that for every V b U we have

u ∈ H2(V ) and that there exists a constant C > 0 independent of u such that

‖u‖H2(V ) ≤ C‖u‖H1(U)

(
1 + ‖u‖2H1(U)

)
.

Solution: Fix V b U and let W ⊂ U be an open set with smooth boundary such
that

V bW b U.

If u ∈ H1(U), then f(u) ∈ L2(W ) since∫
W
|f(u)|2dx ≤

∫
W
|u|6dx

2By a weak solution, we mean a function u ∈ H1(U) such that
∫
U
Du ·Dv dx =

∫
U
f(u)v dx for every

v ∈ H1(U).
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which is finite since H1(W ) ⊂ L6(W ) by Sobolev embedding. Thus, by the interior
H2-regularity theory it follows that u ∈ H2(V ) with

‖u‖H2(V ) ≤ C
(
‖f(u)‖L2(W ) + ‖u‖H1(W )

)
≤ C

(
‖u‖3L6(W ) + ‖u‖H1(W )

)
≤ C‖u‖H1(U)

(
‖u‖2H1(U) + 1

)
.

Since V b U was arbitrary, we are done.

4. Let U ⊂ R3 be open and bounded with smooth boundary and let f ∈ C∞(R) be
given. Suppose that u ∈ H1(U) is a weak solution of the semilinear elliptic PDE

−∆u = f(u) in U

and that, moreover, there exists a constant M > 0 such that ‖u‖L∞(U) ≤ M . Prove
that in fact one has u ∈ C2(U) and hence u is a classical solution of the PDE in the
domain U .

Solution: First, notice that since f ∈ C2(R) and u ∈ L∞(U) we immediately have
that f(u) ∈ L2(U) and hence, by our H2-interior regularity result we have that u ∈
H2

Rloc(U). Now, fix V b U and note for each v ∈ H2(V ) ∩H1
0 (V ) and i ∈ {1, 2, . . . n}

we have ∫
V
Du ·Dvxidx =

∫
V
f(u)vxidx

which, using that each component of Du belongs to H1(V ), implies∫
V
Duxi ·Dv dx =

∫
V
f(u)xiv dx

for all v ∈ H2(V ) ∩H1
0 (V ). It follows that uxi solves the PDE −∆v = f(u)xi , with

appropriate boundary conditions, weakly in V . Since f(u) ∈ L2(V ) and f(u)xj =
f ′(u)uxj ∈ L2(V ), we can apply the interior H2 regularity theorem to see that uxi ∈
H2(W ) for every W b V . Since i andV b U were arbitrary, it follows that u ∈
H3
loc(U). Thus, by the regularity theorem it follows that we can take u ∈ C1(U)

with u,Du ∈ L∞(U). With this observation, following as above we find that for each
i, j ∈ {1, . . . , k} and V b U the function uxixj solves the PDE −∆v = f(u)xixj , with
appropriate boundary conditions, weakly in V . Since

f(u)xixj = f ′′(u)uxiuxj + f ′(u)uxixj ∈ L2(W )

it follows by the interior H2 regularity theorem that uxixj ∈ H2(W ) for every W b V .
As above, it follows that u ∈ H4

loc(U) so that u ∈ C2(U) with u,Du,D2u ∈ L∞(U), as
desired. so that f ∈ H2(W ) and hence, by the regularity theorem, we have u ∈ H4(V ).
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5. (Suggested) Consider the multiplication operator A : L2(0, 1) → L2(0, 1) defined by
Af(x) = xf(x).

(a) Show that A ∈ L
(
L2(0, 1)

)
and that σp(A) = ∅.

(b) Show that C \ [0, 1] ⊂ ρ(A).

(c) Show that if λ ∈ [0, 1], then non-zero constants are not in the range of A − λI.
Conclude that σ(A) = [0, 1].

Solution: (a) Clearly we have

‖A(f)‖2L2(0,1) =

∫ 1

0
(xf(x))2 dx ≤

∫ 1

0
f2dx

so that A ∈ L(L2(0, 1)) with ‖A‖ ≤ 1. To show there are no eigenvalues, suppose
f ∈ L2(0, 1) satisfies

Af = λf

in L2(0, 1) for some λ ∈ C. This implies that (x−λ)f(x) = 0 for a.e. x ∈ (0, 1) which
clearly is only satisfied if f(x) = 0 for a.e. x ∈ (0, 1). Thus, for every λ ∈ C the kernel
of the opeartor A− λI is trivial. It immediately follows that σp(A) = ∅.
(b) Let λ ∈ C \ [0, 1] and note that the function (x− λ)−1 is well-defined and belongs
to L∞(0, 1). Defining Bλ : L2(0, 1) → L2(0, 1) by Bf(x) = (x − λ)−1, it follows that
Bλ ∈ L(L2(0, 1)) and that

Bλ ((A− λI)f) (x) = f(x) = (A− λI) (Bλf) (x)

for every f ∈ L2(0, 1). Therefore, A − λI is bijective with (A − λI)−1 = Bλ ∈
L(L2(0, 1)), from which it immediately follows that λ ∈ ρ(A).

(c) A constant g ∈ R belongs to the range of A − λI if there exists a f ∈ L2(0, 1)
such that Af(x) = g in L2(0, 1). By the definition of A, the only candidate for f is
f(x) = g(x−λ)−1, which does not belong to L2(0, 1) if λ ∈ [0, 1]. Thus, A−λI is not
surjective for λ ∈ [0, 1], and hence [0, 1] ⊂ σ(A). By part (b) above, it follows that
[0, 1] = σ(A), as claimed.

6. (EXTRA CREDIT!!!) Consider the operator K : L2(Rn)→ H1(Rn) defined by K :=
(−∆ + I)−1. The aim of this exercise is to prove that although K is a bounded linear
operator from L2(Rn) into H1(Rn) (as guaranteed by the first existence theorem), it
is NOT a compact operator from L2(Rn) into itself3.

(a) First, fix φ ∈ C∞c (Rn) and consider a sequence {aj} ⊂ Rn such that |aj | → ∞ as
j →∞. Prove that the sequence of functions {φj} defined by φj(x) := φ(x− aj)
is bounded in L2(Rn) and converges weakly4 to zero to zero as j →∞.

3Thus, weak solution operators for uniformly elliptic PDE need not be compact if posed on an unbounded
domain.

4Recall, a sequence {fn} in a Hilbert space H converges weakly to f ∈ H, denoted fn ⇀ f , if F (fn) →
F (f) as n→∞ for every F ∈ H∗. In the setting of problem #6(a) then, we have φj ⇀ 0 if

∫
U
φjv dx→ 0

for every v ∈ L2(Rn).

11



(b) Next, prove the following general theorem: if H is a Hilbert space and if M
is a bounded, linear, compact operator then given any sequence {uk} which
converges weakly to u in H, we have Muk → Mu strongly in H. That is,
compact operators on Hilbert spaces upgrade weak convergence to strong (norm)
convergence. (Hint: A fundamental result of functional analysis, known as the
Banach-Steinhaus Theorem, or principle of uniform boundedness, implies that
all weakly convergent sequences in a Banach space are bounded.)

(c) Prove that, if K ∈ L(L2(Rn)) were compact, then Kφj → 0 in H1(Rn). (Hint:
Here, use the fact that, by construction, the range of K is actually contained in
H1(Rn).)

(d) Still assuming that K is compact, use the fact that the bilinear form B[u, v] :=∫
U (Du ·Dv + uv)dx defined on H1(Rn) ×H1(Rn) is bounded and the result of

part (c) to derive a contradiction.

Solution: (a) The sequence {φj} is clearly bounded in L2(Rn) since ‖φj‖L2(Rn) =
‖φ‖L2(Rn) for all j ∈ N. To show φj ⇀ 0 in L2(Rn), first notice that if v ∈ C∞c (Rn) is
fixed then there exists a J ∈ N such that

spt(φj) ∩ spt(v) = ∅

for all j ≥ J and hence

lim
j→∞

∫
Rn

φjv dx = 0 ∀v ∈ C∞c (Rn).

Now, for v ∈ L2(Rn) let ε > 0 and note we can find a function g ∈ C∞c (Rn) such that
‖v − g‖L2(Rn) < ε. Thus, for all j ∈ N we have∣∣∣∣∫

Rn

φjv dx

∣∣∣∣ ≤ ‖φj‖L2(Rn)‖v − g‖L2(Rn) +

∣∣∣∣∫
Rn

φjg dx

∣∣∣∣
from which it follows that

lim sup
j→∞

∣∣∣∣∫
Rn

φjv dx

∣∣∣∣ ≤ ‖φ‖L2(Rn)ε.

Since ε > 0 was arbitrary, it follows that
∫
Rn φjv dx = 0 for all v ∈ L2(Rn), i.e.

φj ⇀ 0 in L2(Rn).

(b) Since {uk} is assumed to be weakly convergent, it is a bounded sequence in H
by the Banach-Steinhaus theorem (or the principle of uniform boundedness). Thus,
since the operator M : H → H is compact, given any subsequence {ukj} there exists
a subsequence {ukjl} and a w ∈ H such that Mukjl → w in M . Next, I claim that
w = Mu where u is the weak limit of {ukjl} in H.
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To see this, first notice that Mukjl ⇀ w in H since, for all F ∈ H∗,∣∣∣F (Mukjl − w
)∣∣∣ ≤ C‖Mukjl − w‖ → 0

as j →∞. But, we also have that Muk ⇀Mu since, for all v ∈ H,

〈Muk, v〉 = 〈uk,M∗v〉 → 〈u,M∗v〉 = 〈Mu, v〉 .

By uniqueness of weak limits (CHECK!) it follows that Mu = w and hence Mukjl →
Mu. Thus, every subsequence of Muk has a subsequence which converges to Mu, and
hence it follows that Muk →Mu as claimed.

(c) By parts (a) and (b), if K were compact then the sequence {ψj} defined by
ψj := Kφj converges strongly to zero in L2(Rn). Moreover, notice that ψj ∈ H1(Rn)
by construction and, furthermore, for each j ∈ N the function ψj satisfies∫

Rn

(Dψj ·Dv + ψjv) dx =

∫
Rn

φjv dx ∀v ∈ H1
0 (U).

I claim that choosing v = ψj and taking limits as j → ∞ implies that Dψj → 0 in
L2(Rn). To see this, notice ∫

Rn

ψ2
j dx→ 0

as j →∞ by above and, since {φj} is a bounded in L2(Rn),∣∣∣∣∫
Rn

φjψj dx

∣∣∣∣ ≤ ‖φj‖L2(Rn)‖ψj‖L2(Rn) → 0

as j →∞. Therefore, it follows that

lim
j→∞

∫
Rn

|Dψj |2dx = lim
j→∞

∫
Rn

(
φjψj − ψ2

j

)
dx = 0

and hence Dψj → 0 in L2(Rn). Together then this verifies that Kφj → 0 strongly in
H1(Rn), as claimed.

(d) Finally, since ψj = Kφj it follows for each j ∈ N that

B[ψj , w] =

∫
U
φjw dx ∀w ∈ H1

0 (Rn).

Choosing w = φj then, and using the boundedness of B[·, ·] it follows that

‖φj‖2L2(Rn) = B[ψj , φj ] ≤ C‖φj‖H1(Rn)‖ψj‖H1(Rn)

and hence, for all j ∈ N.

‖ψj‖H1(Rn) ≥
‖φj‖L2(Rn)

C‖φj‖H1(Rn)
=
‖φ‖L2(Rn)

C‖φ‖H1(Rn)
> 0.

However, this contradicts the fact that ψj → 0 in H1(Rn) by part (c). Thus, our
assumption that the operator K : L2(Rn)→ L2(Rn) is compact must be false.
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