
Math 951 – Advanced PDE II
Homework 3 – Hints!

Spring 2020

1. A few comments on this problem:

• The point of this problem is to get you to go through your notes again and adapt
all the theory we developed for uniformly elliptic PDE on bounded domains with
Dirichlet boundary conditions to the setting with Neumann boundary conditions.
Honestly, the majority of the solutions to this problem are contained in your notes
already, you just have to find how (or if) some of the proofs need to be modified
to allow for the new set of boundary conditions.

• At first, this looks like a VERY long exercise (and it is!). But, the reason it is so
long is that I have tried very hard to outline each main step needed to complete
the program. Many of these steps have very short solutions and follow closely the
analogous steps carried out in your lecture notes in our study of the analogous
problem with Dirichlet boundary conditions.

2. Let U ⊂ Rn be open and bounded, and let {φj}∞j=1 denote the Dirichlet eigenfunctions

of the operator −∆ defined on U . That is, for a fixed j ∈ N, the functions φj ∈ H1
0 (U)

satisfy the BVP {
−∆φj = λjφj , in U,

φj = 0 on ∂U,

where λj is the jth eigenvalue of −∆ on U . Furthermore, assume that the φj are
normalized so that ‖φj‖L2(U) = 1. Fix k ∈ N and let f ∈ L2(U) be such that∫
U fφk dx 6= 0. Given a real number ε 6= 0 sufficiently small, show there exists a

unique weak solution uε ∈ H1
0 (U) to the BVP

(0.1)

{
−∆u = (λk + ε)u+ f in U

u = 0 on ∂U

and that this unique solution satisfies the estimate

‖uε‖L2(U) ≥
∣∣∫

U fφk dx
∣∣

|ε|
.

Hint: At some point, you will need to use the defining fact that φk satisfies −∆φk =
λkφk weakly, i.e. that ∫

U
DvDφk dx = λk

∫
U
vφk dx

for all v ∈ H1
0 (U).
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3. Consider a function f : R → R satisfying the condition |f(t)| ≤ |t|3 for all t ∈ R and
let U ⊂ R3 be an open and bounded set. Prove that if u ∈ H1(U) is a weak solution
of the semilinear elliptic PDE1

−∆u = f(u) in U

then in fact we have u ∈ H2
loc(U). In particular, prove that for every V b U we have

u ∈ H2(V ) and that there exists a constant C > 0 independent of u such that

‖u‖H2(V ) ≤ C‖u‖H1(U)

(
1 + ‖u‖2H1(U)

)
.

Hint: Here, you will need to use a Sobolev embedding theorem known as the Gagliardo-
Nirenberg-Sobolev (GNS) inequality. This states that if U ⊂ Rn is open and bounded
and if k < n

p , we have the inequality

‖u‖Lq(U) ≤ C‖u‖Wk,p(U), where
1

q
=

1

p
− k

n

for all u ∈ W k,p(U). In particular, GNS implies the embedding W k,p(U) ⊂ Lq(U)
is continuous. The main point of this problem is to use the GNS inequality to show
that show that u ∈ H1(U) implies the “inhomogeneous” term f(u) belongs to L2(U).
Now, try to apply the H2 interior regularity theorem from class.

4. Let U ⊂ R3 be open and bounded with smooth boundary and let f ∈ C∞(R) be
given. Suppose that u ∈ H1(U) is a weak solution of the semilinear elliptic PDE

−∆u = f(u) in U

and that, moreover, there exists a constant M > 0 such that ‖u‖L∞(U) ≤ M . Prove
that in fact one has u ∈ C2(U) and hence u is a classical solution of the PDE in the
domain U .

Hint: Notice that for U ∈ R3 open and bounded with smooth boundary, H2(U) is
contained in C(U) ∩ L∞(U). First then, figure out how large k needs to be to ensure
that u ∈ Hk(U) implies u ∈ C2(U), then use a strategy similar to that of the previous
problem to prove that u in fact has this many derivatives in L2(U).

Extended Hint: First show that f(u) ∈ L2(U), so that u ∈ H2(V ) for all V b U .
Then, for a given V b U and for each i = 1, 2, . . . , n, find a PDE that the function
uxi satisfies weakly in V , and use the interior regularity result again to conclude that
uxi ∈ H2(W ) for every W b V , and then conclude that u ∈ H3(Ω) for every Ω b U .
Continue this process to a point that you can conclude that u ∈ C2(U).

1By a weak solution, we mean a function u ∈ H1(U) such that
∫
U
Du ·Dv dx =

∫
U
f(u)v dx for every

v ∈ H1(U).
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6. (EXTRA CREDIT!!!) Consider the operator K : L2(Rn)→ L2(Rn) defined by K :=
(−∆ + I)−1. The aim of this exercise is to prove that although K is a bounded linear
operator on L2(Rn) (as guaranteed by the first existence theorem), it is not a compact
operator from L2(Rn) into itself.

(a) First, fix φ ∈ C∞c (Rn) and consider a sequence {aj} ⊂ Rn such that |aj | → ∞ as
j →∞. Prove that the sequence of functions {φj} defined by φj(x) := φ(x− aj)
is bounded in L2(Rn) and converges weakly2 to zero as j →∞.

(b) Next, prove the following general theorem: if H is a Hilbert space and if M
is a bounded, linear, compact operator then given any sequence {uk} which
converges weakly to u in H, we have Muk → Mu strongly in H. That is,
compact operators on Hilbert spaces upgrade weak convergence to strong (norm)
convergence. (Hint: A fundamental result of functional analysis, known as the
Banach-Steinhaus Theorem, or principle of uniform boundedness, implies that
all weakly convergent sequences in a Banach space are bounded.)

(c) Prove that, if K ∈ L(L2(Rn)) were compact, then Kφj → 0 in H1(Rn). (Hint:
Here, use the fact that, by construction, the range of K is actually contained in
H1(Rn).)

(d) Still assuming that K is compact, use the fact that the bilinear form B[u, v] :=∫
U (Du ·Dv + uv)dx defined on H1(Rn) ×H1(Rn) is bounded and the result of

part (c) to derive a contradiction.

Hint: (a) First, show that
∫
U φjv dx→ 0 as j →∞ for every v ∈ C∞c (Rn). Then, use

a density argument to show that
∫
U φjv dx→ 0 as j →∞ for every v ∈ L2(Rn).

(b) Use the fact that a sequence {xk} converges to x in a metric space X if and only
if every subsequence of {xk} has a subsequence that converges to x in X. To apply
this in the current situation, start with an arbitrary subsequence of {uk}, say {ukj},
and prove there exists a further subsequence {ukjl} such that Mukjl → Mu in H.
Since this holds for any arbitrary subsequence of {uk}, it follows that Muk → Mu
in H. Also, at some point, you will need to use the fact that weak limits are unique.
Note: You do NOT need to verify either of the above claims (regarding convergent
subsequences and uniqueness of weak limits), although doing so will earn you extra
kudos points!

(c) Show first that ψj := Kφj converges strongly to zero in L2(Rn). It remains to
show that the sequence Dψj converge strongly to zero in L2(Rn as well. To this end,

2Recall, a sequence {fn} in a Hilbert space H converges weakly to f ∈ H, denoted fn ⇀ f , if F (fn) →
F (f) as n→∞ for every F ∈ H∗. In the setting of problem #6(a) then, we have φj ⇀ 0 if

∫
U
φjv dx→ 0

for every v ∈ L2(Rn).
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show that the functions ψj satisfy∫
Rn

(Dψj ·Dv + ψjv) dx =

∫
Rn

φjv dx

for every v ∈ H1(Rn). Show that choosing v = ψj and taking limits as j →∞ above
implies that Dψj → 0 in L2(Rn) as j →∞.

(d) Show that since ψj = Kφj we have

B[ψj , w] =

∫
Rn

φjw dx

for every w ∈ H1(Rn), where B is the bilinaer form on H1(Rn) associated to the
operator −∆ + I. Use the boundedness of B on H1(Rn) to contradict that ψj → 0 in
H1(Rn) as j →∞.
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