
Math 951 – Advanced PDE II
Homework 6 – Solutions!

Spring 2020

Turn in solutions to all problems. Working together in groups is HIGHLY suggested,
although each person from the group must submit their own solutions.

4. Let V : Rn → R be such that V ∈ L∞(Rn) and lim|x|→∞ V (x) = 0. The goal of this
problem is to analyze the “Schrödinger” eigenvalue problem

(0.1) −∆u+ V (x)u = λu, x ∈ Rn, λ ∈ R,

posed on H1(Rn). For this purpose, define the admissible set

A :=

{
u ∈ H1(Rn) :

∫
Rn

|u|2dx = 1

}
and consider the minimization problem

(0.2) µ = inf
u∈A

∫
Rn

(
|Du|2 + V (x)|u|2

)
dx

(a) Show that if u ∈ A is a minimizer for (0.2), then u is a weak solution of (0.1) for
λ = µ.

(b) Suppose {uk}∞k=1 is a sequence in H1(Rn) such that uk converges weakly to a
function u ∈ H1(Rn) weakly in H1(Rn). Establish the following “compactness”
result: under the above hypothesis on V , there exists a subsequence1 {ukj}∞j=1

such that

lim
j→∞

∫
Rn

V (x)|ukj (x)|2dx→
∫
Rn

V (x)|u(x)|2dx.

(Hint: A fundamental results of functional analysis, known as the Banach-Steinhaus
theorem, or principle of uniform boundedness, implies that all weakly convergent
sequences in a Banach space are bounded).

(c) Let V be as above and suppose there exists a function w ∈ A such that∫
Rn

(
|Dw|2 + V (x)|w|2

)
dx < 0.

Show that the minimization problem (0.2) has a minimizer u ∈ A.

Solution: (a) Define the functionals F,G : H1(Rn)→ R by

F (u) =

∫
Rn

(
|Du|2 + V (x)|u|2

)
dx, G(u) =

∫
Rn

|u|2dx,

1Actually, one can verify this result with out passing to a subsequence. While this is not necessary for
the problem, I suggest trying to understand why this is so.
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noting in particular that F is well defined since V ∈ L∞(Rn). By direct calculation,
we find that F and G are both Gâteaux differentiable on H1(Rn) with

dF [u]v =

∫
Rn

(Du ·Dv + V (x)uv) dx, dG[u]v = 2

∫
Rn

uv dx

for all v ∈ H1(Rn). Furthermore, by Problem #2 in the notes we know that G :
H1(Rn)→ R is C1 and hence, by the Lagrange multiplier theorem, any minimizer of
F |A must satisfy

(0.3)

∫
Rn

(Du ·Dv + V (x)uv) dx = λ

∫
Rn

uv dx, ∀v ∈ H1(Rn)

for some λ ∈ R, i.e. u must be a weak solution of

−∆u+ V (x)u = λu

on H1(Rn). Taking u = v in (0.3), it follows from the definition of µ that

µ = F (u) = λ

∫
Rn

|u|2dx = λ

so that u is a weak solution of (0.1) with λ = µ.

(b) By the Banach-Steinhaus theorem, the sequence {uk}∞k=1 is bounded in H1(Rn)
so that, in particular, there exists a constant M > 0 such that ‖uk‖H1(Rn) ≤ M for
all k ∈ N and, consequently, ‖u‖H1(Rn) ≤M . Now, for each k ∈ N let

Ṽk :=

∫
Rn

V (x)|uk(x)|2dx

and set Ṽ :=
∫
Rn V (x)|u(x)|2dx. We want to show limj→∞ Ṽkj = Ṽ for some subse-

quence {Ṽkj}∞j=1 of {Ṽk}∞k=1. To this end, let ε > 0 be arbitrary. Since V (x) → 0 as
|x| → ∞, there exists a R = R(ε) > 0 such that

|V (x)| ≤ ε

4M2

for all |x| > R. By Rellich-Kondrachov, H1(B(0, R)) b L2(B(0, R)) and hence there
exists a subsequence {ukj}∞j=1 and a function u0 ∈ L2(B(0, R)) such that ukj → u0
strongly in L2(B(0, R)). Since strong convergence implies weak convergence, and since
weak limits are unique, it follows that u0 = u. Thus, there exists a constant K > 0
such that ∥∥|ukj |2 − |u|2∥∥L1(B(0,R))

<
ε

2‖V ‖L∞
∀j > K.
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For j > K then, we have∣∣∣Ṽkj − Ṽ ∣∣∣ ≤ ∫
Rn

|V (x)|
∣∣|ukj |2 − |u|2∣∣ dx

≤
∫
B(0,R)

|V (x)|
∣∣|ukj |2 − |u|2∣∣ dx

+

∫
|x|>R

|V (x)|
(
|ukj |

2 + |u|2
)

≤ ‖V ‖L∞(Rn)

∥∥|ukj |2 − |u|2∥∥L1(B(0,R))

+
ε

4M2

(
‖ukj‖

2
L2(Rn) + ‖u‖2L2(Rn)

)
< ε.

Since ε > 0 was arbitrary, we conclude that Ṽkj → Ṽ as claimed.

(c) First, notice that for all u ∈ A we have

F (u) ≥
∫
Rn

|Du|2dx− ‖V ‖L∞(Rn)

so that, in particular, F is bounded below on A. Moreover, the above inequality
implies that F is coercive on A by the following reasoning: if a sequence {φk}∞k=1 in
A is unbounded in H1(Rn), it must be that ‖Dφk‖L2(Rn) →∞ as k →∞ and hence
the above inequality implies that F (φk)→∞. That is,

lim
‖u‖H1(Rn)→∞

u∈A

F (u) =∞,

i.e. F is coercive on A.

Now, the fact that F is bounded below on A allows us to take a minimizing sequence
{uk}∞k=1 in A such that F (uk)→ µ. Since F is coercive on A, it follows that {uk}∞k=1

must be bounded in H1(Rn). Since H1(Rn) is reflexive, there exists a subsequence
{ukj}∞j=1 and a function u0 ∈ H1(Rn) such that ukj ⇀ u∗ in H1(Rn). By the “com-
pactness” result in part (b) above, upon passing to a further subsequence we can
assume that

lim
j→∞

∫
Rn

V (x)|ukj |
2dx =

∫
Rn

V (x)|u(x)|2dx

and hence, by the weak lower semicontinuity of the functional

H1(Rn) 3 u 7→
∫
Rn

|Du|2dx ∈ R,

it follows that
F (u0) ≤ lim inf

j→∞
F (ukj ).
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In particular, by the definition of µ and the fact that {ukj}∞j=1 is a minimizing sequence
for F |A, we find that F (u0) ≤ µ. To conclude that u0 is a minimizer for F |A, it remains
to show that u0 ∈ A.

Suppose u0 /∈ A and note since the functional H1(Rn) 3 u 7→ ‖u‖2L2(Rn) is weakly
lower semicontinuous we have

‖u0‖2L2(Rn) ≤ lim inf
j→∞

‖ukj‖
2
L2(Rn) = 1,

and hence we must have ‖u0‖L2(Rn) < 1. Further, since F (u) < 0 for some u ∈ A, it
follows that F (u0) ≤ µ < 0 so that, in particular, u0 is not identically zero. Thus,
0 < ‖u0‖2L2(Rn) < 1 and hence

ũ0 :=
u0

‖u0‖L2(Rn)
∈ A

and, recalling that F (u0) < 0,

(0.4) F (ũ0) =
F (u0)

‖u0‖2L2(Rn)

< F (u0) ≤ µ.

which contradicts the definition of µ. Notice in obtaining the second inequality in
(0.4), we are very heavily using the fact that µ < 0. It follows that u0 must indeed
belong to the admissible set A and hence u0 is a minimizer of F |A.

5. Continuing the above problem, set F (u) :=
∫
Rn

(
|Du|2 + V (x)|u|2

)
dx and let A be

defined as above. A major question in mathematical quantum mechanics is to identify
a class of potentials V for which it is true that F (w) < 0 for some w ∈ A. Clearly, for
this to be true the potential must be “negative enough”: this intentially vague notion
is typically quantified by requiring that

∫
Rn V (x)dx < 0, in which case we say V is an

“attractive” potential. However, in high dimensions, it is not the case that F (w) < 0
for some w ∈ H1(Rn) for every attractive potential V . This exercise explores this
idea.

(a) Show that if n = 1, 2 and the potential V ∈ L∞(Rn)∩L1(Rn) is attractive, then
there exists a u ∈ A such that F (u) < 0.

(b) Prove Hardy’s inequality: if n ≥ 3, then∫
Rn

u2

|x|2
dx ≤ 4

(n− 2)2

∫
Rn

|Du|2dx

for all u ∈ H1(Rn).

(c) Let n ≥ 3 and define the potential V (x) := − (n−2)2
4|x|2 on Rn. Conclude that even

though V is an attractive potential, we have F (u) ≥ 0 for every u ∈ H1(Rn).

4



Note: This part explicitly shows that for the time-dependent Schrödinger equa-
tion

iut = −∆u+ V (x)u, x ∈ Rn, t ∈ R,

attractive potentials in Rn for n ≥ 3 may not support “bound states”, i.e. solu-
tions of the form u(x, t) = e−iλtφ(x) for some λ ∈ R and non-trivial φ ∈ H1(R).

Solution: (a) Fix u ∈ C∞c (Rn) ∩ A with u(0) 6= 0 and define for each L > 0 the
dilation uL(x) := L−n/2u(x/L). Then for each L > 0 we have uL ∈ C∞c (Rn) ∩ A and

F (uL) = L−2
∫
Rn

|Du|2dx+ L−n
∫
Rn

V (x)|u(x/L)|2dx.

The key observation here is that, by our assumptions on V , we have

lim
L→∞

∫
Rn

V (x)|u(x/L)|2dx = |u(0)|2
∫
Rn

V (x)dx.

Indeed, assuming spt(u) ⊂ B(0, R) for some R > 0, there exists a constant CR > 0
such that for all L > 0 we have∣∣∣∣∫

Rn

V (x)|u(x/L)|2dx− |u(0)|2
∫
Rn

V (x)dx

∣∣∣∣ ≤ ‖V ‖L∞(Rn)

∫
B(0,R)

|u(x/L)− u(0)|2 dx

= ‖V ‖L∞(Rn)

(
Ln
∫
B(0,R/L)

|u(z)− u(0)|2dz

)

= CR‖V ‖L∞(Rn)

(
1

|B(0, R/L)|

∫
B(0,R/L)

|u(z)− u(0)|2dz

)
,

which clearly converges to zero as L→∞ by the continuity of u.

With the above identity in mind, notice that if n = 1 we have

F (uL) =
1

L

(
1

L

∫
Rn

|Du|2dx+

∫
Rn

V (x)|u(x/L)|2dx
)
,

which is negative for L sufficientyl large by our assumption that V is an attractive
potential. Similarly, if n = 2 we have

F (uL) =
1

L2

(∫
Rn

|Du|2dx+

∫
Rn

V (x)|u(x/L)|2dx
)

so that, by choosing u(0) such that∫
Rn

|Du|2dx+ |u(0)|2
∫
R2

V (x)dx < 0,

then F (uL) < 0 for L sufficiently large in this case as well.
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(b) Notice that for all λ ∈ R we have

0 ≤
∫
Rn

[
|Du|2 + 2λuDu · x

|x|2
+ λ2

u2

|x|2

]
dx.

Moreover, integrating by parts yields the identity∫
Rn

u

|x|2
Du · xdx = −

∫
Rn

u∇ ·
(

u

|x|2
x

)
dx

= −
∫
Rn

[
u2
(
D|x|−2

)
· x+

u

|x|2
Du · x+ n

u2

|x|2

]
dx.

This may be further simplified by noticing

x ·D|x|−2 = x ·
(
−2x

|x|4

)
= − 2

|x|2

and hence, after rearranging,

2

∫
Rn

u

|x|2
Du · xdx = (2− n)

∫
Rn

u2

|x|2
dx.

It follows that for any λ ∈ R we have the inequality

0 ≤
∫
Rn

|Du|2dx+ (λ(2− n) + λ2)

∫
Rn

u2

|x|2
dx.

Finally, notice that the function f(λ) = (λ(2− n) + λ2) has a negative absolute min

value of − (n−2)2
4 corresponding to λ = n−2

2 . Using this distinguished value of λ above
yields the inequality ∫

Rn

u2

|x|2
dx ≤ 4

(n− 2)2

∫
Rn

|Du|2dx

as claimed. (Note: This bound is sharp!)

(c) Clearly V is an attractive potential since V (x) < 0 for all x ∈ R. Nevertheless,
Hardy’s inequality implies F (u) ≥ 0 for all u ∈ H1(Rn)), as claimed.
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