Math 951 — Advanced PDE II
Homework 6 — Solutions!

Spring 2020

Turn in solutions to all problems. Working together in groups is HIGHLY suggested,
although each person from the group must submit their own solutions.

4. Let V : R — R be such that V' € L*®(R") and lim|g|_,o, V' (7) = 0. The goal of this
problem is to analyze the “Schrodinger” eigenvalue problem

(0.1) —Au+V(x)u=Au, xeR" NeR,

posed on H'(R™). For this purpose, define the admissible set

A= {u e H'(R") - / fuf2dz = 1}

and consider the minimization problem

(0.2) p = inf / (|Dul® + V(z)|ul?) dz
ueA Rn

(a) Show that if u € A is a minimizer for (0.2), then u is a weak solution of (0.1) for
A= L.

(b) Suppose {u}2; is a sequence in H'(R™) such that uj converges weakly to a
function u € H'(R") weakly in H!(R™). Establish the following “compactness”
result: under the above hypothesis on V, there exists a subsequence’ {ug, };’il
such that

lim V(z)|uk; (z)dx — /Rn V(z)|u(x)*d.

Jj—o0 Jrn

(Hint: A fundamental results of functional analysis, known as the Banach-Steinhaus
theorem, or principle of uniform boundedness, implies that all weakly convergent
sequences in a Banach space are bounded).

(c) Let V be as above and suppose there exists a function w € A such that
/ (|Dw|* 4+ V (2)|w|?) dz < 0.
Rn
Show that the minimization problem (0.2) has a minimizer u € A.

Solution: (a) Define the functionals F, G : H!(R") — R by

n

F(u):/Rn (IDuf? + V(@)[ul?) d, G(u):/ uf2da,

! Actually, one can verify this result with out passing to a subsequence. While this is not necessary for
the problem, I suggest trying to understand why this is so.



noting in particular that F' is well defined since V € L>°(R™). By direct calculation,
we find that F and G are both Gateaux differentiable on H'(R™) with

dF[u]v = /n (Du-Dv+V(z)uw)dz, dGujv= 2/ uv dz

n

for all v € HY(R™). Furthermore, by Problem #2 in the notes we know that G :
H'(R™) — R is C! and hence, by the Lagrange multiplier theorem, any minimizer of
F| 4 must satisfy

(0.3) / (Du - Dv+ V(z)uv)de = )\/ wv dz, Vv e H'(R")
for some A\ € R, i.e. u must be a weak solution of
—Au+V(z)u = u

on H!(R™). Taking u = v in (0.3), it follows from the definition of x that

w=F(u) :)\/ lu|?dz = A

so that u is a weak solution of (0.1) with A = p.

(b) By the Banach-Steinhaus theorem, the sequence {u}?°, is bounded in H'(R")
so that, in particular, there exists a constant M > 0 such that |lug| g1 gny < M for
all k € N and, consequently, |[u[|g1®n) < M. Now, for each k € N let

o= [ V@ho)Pds

and set V := Jgn V() |u(z)[*dz. We want to show lim;_,q ‘7kj = V for some subse-
quence {YN/;.CJ 1524 of {Vk}z‘;l To this end, let € > 0 be arbitrary. Since V(z) — 0 as
|z| — oo, there exists a R = R(¢) > 0 such that

5
4M?

V(2)| <

for all |z| > R. By Rellich-Kondrachov, H!(B(0, R)) € L?(B(0, R)) and hence there
exists a subsequence {uy;}32; and a function ug € L*(B(0, R)) such that ug, — uo
strongly in L2(B(0, R)). Since strong convergence implies weak convergence, and since
weak limits are unique, it follows that ug = u. Thus, there exists a constant K > 0
such that

€ .
H|“ch|2 _ |u|2HL1(B(O,R)) < W Vi > K.



For j > K then, we have

Vi, 7| < /R V(@) |, ? — [uf?| de

< / V(@) |, ? — [uf?| de
B(0,R)

+ / V(@) (Juy | + )
|z|>R
< HV”LOO(]R") H\Uij - ‘“‘2”L1(B(0,R))

S
e (””’“a‘ 172 gemy + HUII%z(Rn))
<e.

Since € > 0 was arbitrary, we conclude that YN/kj — V as claimed.

(c) First, notice that for all u € A we have

Flu) > /R Duf2dz — ||V | e e

so that, in particular, F' is bounded below on A. Moreover, the above inequality
implies that F' is coercive on A by the following reasoning: if a sequence {¢;}72; in
A is unbounded in H'(R"), it must be that | D@y 2(rny — 00 as k — oo and hence
the above inequality implies that F'(¢y) — co. That is,

lim F(u) = oo,

||u||H1<Rn)~>oo

ucA
i.e. F is coercive on A.

Now, the fact that F' is bounded below on A allows us to take a minimizing sequence
{ur}p2, in A such that F(uy) — p. Since F' is coercive on A, it follows that {ux}32
must be bounded in H'(R"). Since H'(R") is reflexive, there exists a subsequence
{ug; }32, and a function ug € H'(R™) such that u, — v* in H'(R"). By the “com-
pactness” result in part (b) above, upon passing to a further subsequence we can
assume that

lim [ V(@)|uy [Pde = / V(@) u(z)2dz

Jj—00 R™ Rn

and hence, by the weak lower semicontinuity of the functional

HYR") > u— |Duf*dz € R,
R’I’L
it follows that
F(up) < liminf F(ug;).

J]—00



In particular, by the definition of y and the fact that {uy; };";1 is a minimizing sequence
for F'| 4, we find that F'(ug) < u. To conclude that ug is a minimizer for F'| 4, it remains
to show that ug € A.

Suppose ug ¢ A and note since the functional H'(R?) > u HUH%Q(RH) is weakly
lower semicontinuous we have

ool 7y < liminf [, 72 gn) = 1.

and hence we must have |luo||z2mn) < 1. Further, since F'(u) < 0 for some u € A, it
follows that F'(up) < p < 0 so that, in particular, ug is not identically zero. Thus,
0< HUOH%Q(RH) < 1 and hence

Uuo

Uy =7———€A
”u0||L2([R”)
and, recalling that F'(ug) < 0,
F
HUOHL2(Rn)

which contradicts the definition of u. Notice in obtaining the second inequality in
(0.4), we are very heavily using the fact that u < 0. It follows that uy must indeed
belong to the admissible set A and hence ug is a minimizer of F| 4.

. Continuing the above problem, set F(u) := [p. (|Dul?> + V(2)[ul?) dz and let A be
defined as above. A major question in mathematical quantum mechanics is to identify
a class of potentials V' for which it is true that F'(w) < 0 for some w € A. Clearly, for
this to be true the potential must be “negative enough”: this intentially vague notion
is typically quantified by requiring that fR" V(xz)dx < 0, in which case we say V is an
“attractive” potential. However, in high dimensions, it is not the case that F(w) < 0
for some w € H!(R™) for every attractive potential V. This exercise explores this
idea.

(a) Show that if n = 1,2 and the potential V € L*°(R") N L!(R") is attractive, then
there exists a u € A such that F(u) < 0.

(b) Prove Hardy’s inequality: if n > 3, then

2 4
/ u—2d:v§ 2/ | Dul?dz
R || (n—2)% Jgn

for all u € H(R").
(n—2)2

(c) Let n > 3 and define the potential V (z) := — iz on R"™. Conclude that even
though V is an attractive potential, we have F(u) > 0 for every u € H'(R").



Note: This part explicitly shows that for the time-dependent Schrodinger equa-
tion
iug = —Au+V(x)u, x€R", teR,

attractive potentials in R™ for n > 3 may not support “bound states”, i.e. solu-
tions of the form u(z,t) = e~ @(z) for some A € R and non-trivial ¢ € H'(R).

Solution: (a) Fix u € C(R") N A with u(0) # 0 and define for each L > 0 the
dilation ur,(z) := L~™?u(x/L). Then for each L > 0 we have u;, € C°(R") N A and

Flug) = L2 /R \Dul?dz + L /R V(@)|u(z/ L) 2dz.

The key observation here is that, by our assumptions on V', we have

lim V(x)|u(z/L)|*dx = |u(0)? /Rn V(z)dz.

L—oo Jrn

Indeed, assuming spt(u) C B(0, R) for some R > 0, there exists a constant Cr > 0
such that for all L > 0 we have

/ V(@) uar/L) P — |u(0) 2 / V(2)da
R Rn

= ||V Lo mn) (L"/ u(z) U(O)\2d2)
B(0,R/L)

1
|B(0, R/L)| JB(o,r/L)

which clearly converges to zero as L — oo by the continuity of w.

< Vil pos (ny / lu(z/L) — u(0)|? de

)

= Cr[IV || Lo (mn) ( lu(z) — U(0)|2d2> ;

With the above identity in mind, notice that if n = 1 we have

Flug) = % <i /R |Du2dx+/Rn V(:Jc)|u(x/L)|2dx>,

which is negative for L sufficientyl large by our assumption that V is an attractive
potential. Similarly, if n = 2 we have

Fluy) = % (/R | Duldz + /R V(:U)|u(:v/L)2dx>

so that, by choosing u(0) such that

/ Du|2da;+yu(0)|2/ V(x)dz <0,
n R2

then F'(ur) < 0 for L sufficiently large in this case as well.



(b) Notice that for all A € R we have

2 x o 2
0< |Dul® 4+ 2 \uDu - — + X\*— | dx.
n |=[? |z

Moreover, integrating by parts yields the identity

/ uDu-xdx:—/ uV - L:c dzx
e |2]? n |z[?
U

2
= —/ [uQ (D]z|72) -2 + 2Du-x+nu] dx.

|z] |z [?

This may be further simplified by noticing

—2z 2
_2_ _
o Dol = () =

and hence, after rearranging,

2
u u
2/ —=Du - xdx = (2—n)/ —=dz.
Rn 7] Rn 2]

It follows that for any A € R we have the inequality

2
og/ ]Du|2da:+()\(2—n)+)\2)/ #dz.
n R'n xr

Finally, notice that the function f(\) = (A(2 —n) + A?) has a negative absolute min

value of —% corresponding to A = ”TQ Using this distinguished value of A above

yields the inequality
u? 4 9
/ Tpdr < 2/ | Du|*dz
rn | 7| (n—2)% Jgn

as claimed. (Note: This bound is sharp!)

(c) Clearly V is an attractive potential since V(z) < 0 for all x € R. Nevertheless,
Hardy’s inequality implies F(u) > 0 for all u € H*(R")), as claimed.



