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NOTES ON FUNCTIONAL ANALYSIS FOR MATH C? f-)—- [

ROBERT JERRARD

1. BANACH SPACES

Summary: A Banach space is a (typically) infinite-dimensional vector space
equipped with a norm. For PDE purposes, most of the interesting examples are
spaces of functions. Also, most of the spaces of functions we encounter in studying
PDE are Banach spaces.

Some examples are given, and basic properties are discussed.

1.1, loose definition. A Banach space X is a complete normed linear space. This
means

e “ linear” If z,y € X and a,b are scalars then az + by € X. In other words,
X is a vector space. We will usually work with real Banach spaces, ie spaces
for which the scalars are real numbers. '

e “normed” There is a function which assigns to an element z € X a non-
negative number ||z||, called “the norm of ”. This function satisfies certain
familiar axioms such as the triangle inequality, ||z + y|| < (|z|| + ||y||. (The
axioms are recalled in Section 1.2) ‘

¢ “complete” Since the space has a norm, it makes sense to talk about con-
vergence: a sequence of elements z, € X converges to a limit z € X if
[|#n — z|| =& 0 as n — oo. The completeness property means that every
Cauchj‘( sequence has a limit.

1.2. examples. Most interesting Banach spaces are infinite dimensional, but there
are also finite-dimensional examples, and we include some of them. ‘

Note that in order to describe a Banach space, we have to state not only what
the elements of the space are, but also what the norm is.

1. Fix some 1 £ p < co. A finite-dimensional Banach space is given by X ~ R",
where the norm is defined by

- .
llellp = (O l=:f?) V2,
i=1
where = = (zy,...,z,) € X.

Remark: We write X &~ R" instead of X = R" to emphasize that X is
determined by not only the set of points that compise it, but also the norm.
We usually think of R™ as having the standard Eucidean norm, and our space
X does not have this norm, except when p = 2.

2. Again taking X = R", we get a different Banach space by defining the norm

o] := maxa].
1
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We write this norm as ||}|c, since
4‘% Pr‘aWz Hus !

Ieloo = Jiz ll

Remark: For any finite n, all n-dimensional Banach spaces are topologi-

cally equivalent.

3. Take X to be the set of continuous functions on a bounded open subset Q2 of
some R™, with the norm [|f|| := max,ecq |f(x)}|. This space is called C{(2).

4. Take X to be the set of all continuously differentiable functions on a bounded
open subset 2 of some R™, with the norm || f]| := maxgeq |f(z)|+max.cq |Df(z)|.
This space is called C(2).

5. Fix some 1 < p < oo, and take X to be the set of all measurable functions
f: © — R, for some open subset {2 C R", such that

( / | fl”d:c) o,

The norm of f in X is then defined to be the quantity on the left-hand side
of the above inequality. This space is LP(2).

6. Fix some 1 < p < oo, and take X to be the set of all measurable functions
f : 1 = R, for some subset  C R", such that f has a “weak derivative” Df
(in some sense that can be made precise) and

( f fP +1D flpdx)l/P «66,

The norm of f is then defined to be the quantity on the left-hand side of the
above inequality. This space is W1P(2).

This is an example of a Sobolev space. These provide the natural functional
analytic setting for many PDE questions, so we will study their properties in
great detail.

1.3. PDE considerations. In PDE applications, it is important to select the
“correct” splace X in which to work; what this space is will depend on the details of
the problem under consideration. For example, suppose that {2 is a bounded open
set, and I want to find a function u : {2 — R satisfying '

uwAuzfeLz(Q)
u=0 on 9.

If I multiply the equation by u and integrate, integrating by parts in the process, I
find that a solution u must satisfy

/(u2+lDu12)d$ = fuz—uAudx
Q Q
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using the fact that 2ab < a® 4+ b?. By subtracting, we find that
[ (u? + |Duff)dz < C / fdz
Q
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for our solution . This suggests that, if I want to use techniques from functional
analysis to solve the equation, I should look for a solution in the space W12(f),
defined in Example 6 above, since the quantity on the left is just the W2 norm
squared.

1.4. Some details. Here we record the precise definition of a norm.
A function z + || || is a norm if it has the following properties:

llzlt 20 Vze X, and ||z|| =0 <= z=0.
e +y Il < ll=ll + llyll;

llaz]] = lei |2];

for all scalars o and z € X.

It is not obvious that all of the norms given in the examples above in fact have
these properties. Clearly, the triangle inequality is the hardest to check. The
statement that this holds for LP(Q?) is known as Minkowski’s ineqality.

It is also not obvious that the above normed linear spaces are complete, and
hence are Banach spaces.

Strictly speaking, an element of the space L?() is not a function, but rather an
equivalence class of functions, where we set f ~ g if f = g a.e. That is, we identify
all functions which agree up to a set of measure zero.

The same is true for Sobolev spaces.

We will discuss at some length what it means for a function to have weak deriv-
atives.

2. HILBERT SPACES

Summary: A Hilbert space is a particularly well-behaved kind of Banach space,
in which thesnorm is derived from an inner product.
Some examples are given, and basic properties are discussed.

2.1. definition. A Hilbert space H is a Banach space in which the norm is derived
from an inner product. For concreteness I will define real Hilbert spaces; there is
a corresponding definition for complez Hilbert spaces that is similar in spirit but
differs in one or two important details.

An inner product is a function that takes a pair of elements z, y of the space and
produces a scalar. The inner product of x and vy is usually written

(z,9)
It should satisfy a number of familiar axioms, for example,
(z,9) = (v, 2) (az + by, z) = a(z, 2) + b(y, 2)

for a,b € R and z,y, 2 € H. Moreover, it should have the property that (z,z) > 0
and (z,z) = 0 if and only if x = 0. Hence

lzll == v/ (=, z)

defines a norm that makes H into a Banach space.
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2.2. examples. Most interesting Hilbert spaces are infinite dimensional, but there
are also finite-dimensional examples, and we include some of them.
Note that in order to describe a Hilbert space, we have to state not only what
the elements of the space are, but also what the norm is.
1. A finite-dimensional Hilbert space is given by R™ with the standard inner
product,

n
(v,w) = z'ww,-, 0= [vi¥nly B {Wigesy iy )
i=1

This is essentially the only finite-dimensional Hilbert spaces. (Why?)
2. Suppose §1 is a bounded open subset of some Euclidean space R™. Then L?(f2)
is a Hilbert space with the inner product

(u,v) = / uv dz.
Q

3. The Sobolev space W2 (a special case of the spaces defined in Example 6 in
Section 1.2) is a Hilbert space, with the inner product

(u,v)z/uv+Du-Dvdz.
o

2.3. basic properties. Two vectors z,y € H are said to be orthogonalif (z,y) = 0.
Similarly, a vector = € H is orthogonal to a subspace Y C H if (z,y) =0Vy € Y.

Note that the notion of orthogonality does not make sense in a general Banach
space.

3. DUAL SPACES

Summary: Every Banach space has a dual space, which is again a Banach
space. The definition of a dual space is given. An easy example is presented to
show how the dual of a Banach space can be concretely represented, and a number
of harder and more important examples are stated.

3.1. Definition. Whenever X is a Banach space we can define the dual space X*

to be the collection of all bounded linear functionals on X, endowed with the dual
norm. This means:

e For our purposes, a functional is a function [ : X — R. (If X is a complex

Banach space, then we would instead consider { : X — C.) Such a functional \

is linear if the obvious identity holds:

l{ax + by) = al(z) + bi(y), ,y€X, abeR.
It is bounded if there exists some constant C such that
(3.1) [i(z)| < C |j=|| Vz e X.

e We define the dual norm on X* by
H x> = sup{l{z) | z € X, |l=||x <1}

for a linear functional I € X*. Equivalently, ||{|| is the smallest value that can
be taken for the constant C on the right-hand side of (3.1).

It is a fact that, for any Banach space X, the dual space is again a Banach space.
That is, it is a complete linear space, and moreover the dual norm defined above
has all the properties that we require of a norm.
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3.2. Representation theorems. Given any Banach space X, the dual space X*
has the abstract description that we have given above, as a space of linear function-
als endowed with a certain norm. It is often of interest to find some more concrete
description of X*. Results of this sort are called representation theorems. We first
indicate how this is done by looking at

3.2.1. an extremely simple ezample. Let X be a n-dimensional vector space, which
we can identify with R®. We make X into a Banach space by giving it the norm

(@1, ey zn)ll = |2a| + oo + [2nl-

We will write ey, ..., e, for the standard basis vectors in X =~ R"™.
We claim that linear functionals on X can be identified with vectors v € R™.
To see this, note first that, given any v € R", we can use it to define a linear
functional [ on X as follows: )

(3.2) luz)=z-v.

Conversely, given any linear functional [ on X, we claim that there is a v in
R™ such that | = [, as defined above. In fact v can be written down explicitly:

v:= (I{e1), ..., l(en)).

We check that this works. For any z = (21, ..., %n) € X we have by linearity

H{z) = Uzie1+...+ Znen)
= zl(e1) + ... + Zal(en)
(3.3) = gz (ller),....l{en)) =% v

as required.

Thus we can identify linear functionals on X with vectors v € R™.

Once we have done this, we can ask, what is the dual norm on X* =~ R™?
(Remember, R™ can be given any number of different norms that make it into a
Banach space.)

Given v € X* ~ R", the dual norm by definition is

Ilwlixs = sup{v-z | [z1] +... + |za] < 1}
It is not hard to see that
(3.4) [Jvllx- = max{jvi|, ..., lval}, = {ipeuns U )i

Thus, starting from the abstract description of X* as the dual space of a certain
Banach space X, we have found a very concrete representation of X* as an n-
dimensional vector space with the morm given by (3.4), and the correspondence
between the concrete and the abstract realizations given by (3.3) and (3.2).

3.2.2. harder examples. A lot of effort in the early part of this century was devoted
to finding concrete and natural ways of representing the dual spaces of certain
Banach spaces that frequently appear in analysis. Here are some of the most
important results:
e Suppose that 1 < p < o0 and %+ % = 1. Then the dual of R™ with the
p—norm is precisely R™ with the g-norm. In the simple example above we
have verified this statement for the case p = 1.
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e Suppose that 1 < p < co and _%-I—% = 1. Let U be any bounded open subset of
R™. Then the dual of L?(U) can be identified with L2(U). In particular, given
any bounded linear functional {.: L*(U) — R, there is a unique v € LI(U)
such that

l(u)z/[;mr dx

for all w € LP(U). (This fails for p = c0,q = 1. In fact, L' C {L>)" by below,
but the reverse inclusion fails.) In the other direction, given any v € LI(U)

the mapping
u— / uv dx
U

defines a bounded linear functional on u € LP(U) (by Holder’s inedua.lity),
and moreover

ol sup{ / vl @ u & DA, fallgs < 1)
U

(This also holds for p = oc,g=1.)

e If H is any Hilbert space, then the dual of H can be identified with H itself.
In other words, given any bounded linear functional { : H — R, there exists
a unique element x of H such that I(y) = (z,y), for all y € H. (This is the
Riesz Representation Theorem, also known as the Riesz—Fischer Theorem.)

e Note that the dual of L2(U) is L?(U). This is a special case of both the above
examples.

e The dual space of L°(U) is not L!(U), as mentioned above. In fact, L1(U)
is not the dual space of any Banach space.

e Let C(U) be the Banach space of continuous functions on U, as in example
3 in Section 1.2. Its dual space is the space of signed Radon measures on U.
This is a large space which includes not only all L! functions but also things
like “delta functions”. Thus, although L! is not a dual space, it is contained
in a larger space which is a dual space.



