Math 951 Lecture Notes The Principle Eigenvalue Theorem

Mathew A. Johnson ¹ Department of Mathematics, University of Kansas matjohn@ku.edu

1 Introduction

There has been several questions concerning the simplicity of the principle eigenvalue for uniformly elliptic operators on bounded domains. In these notes, I aim to present the big idea in at least the symmetric case. For those interested in the non-symmetric case, see Theorem 3 in Section 6.5 in Evans.

To this end, let $\Omega \subset \mathbb{R}^n$ be open, bounded and connected, and consider the eigenvalue problem

$$\begin{cases} -\Delta u = \lambda u, & \text{in } \Omega\\ u = 0, & \text{on } \partial \Omega. \end{cases}$$
(1)

As we know from class, non-trivial solutions of (1) exist only when λ is an $H_0^1(\Omega)$ eigenvalue of the operator $-\Delta$. Such eigenvalues form an increasing sequence

$$0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \dots \nearrow +\infty$$

and each eigenvalue λ_j has corresponding eigenfunction $\phi_j \in H_0^1(\Omega)$. Above, each eigenvalue is listed with respect to its multiplicity. That is, if λ_j has, say, *m* linearly independent eigenfunctions, then it is listed exactly *m* times in the above list.

Theorem 1 (Principle Eigenvalue Theorem). The principle eigenvalue λ_1 for the operator $-\Delta$ on $H_0^1(\Omega)$ is simple, that is, there exists $\phi_1 \in H_0^1(\Omega)$ such that

$$\operatorname{Ker}\left(-\Delta - \lambda_1 I\right) = \operatorname{span}\left\{\phi_1\right\}.$$

Furthermore, the principle eigenfunction ϕ_1 may be chosen to be strictly positive on Ω .

The above result is very powerful, and applies in various other $contexts^2$. Its proof is primarily composed of 2 main components:

(1) A variational characterization of the principle eigenvalue λ_1 .

¹Copyright ©2019 by Mathew A. Johnson (matjohn@ku.edu). This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

²In particular, this result continues to be true even for non-symmetric uniformly elliptic differential operators on Ω . See Theorem 3 in Section 6.5.2 in Evans. The proof, however, is considerably more complicated...

(2) The Strong Maximum Principle for uniformly elliptic operators on Ω

Once these are established, the proof proceeds by using the variational formulation to prove that ϕ_1 may be chosen to be either non-negative or non-positive on Ω . Once this is established, the Strong Maximum Principle is then used to conclude that ϕ_1 can not vanish on the interior of Ω . Finally, the simplicity of λ_1 follows by another application of the Strong Maximum Principe.

2 Proof of the Principle Eigenvalue Theorem

Our first step in the proof of Theorem 1 is to establish the following fundamental result.

Theorem 2 (Variational Characterization of λ_1). Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary, and let λ_1 be the principle eigenvlaue of $-\Delta$ on $H_0^1(\Omega)$ with eigenfunction ϕ_1 . Then

$$\lambda_1 = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} |Du|^2 dx}{\|u\|_{L^2(\Omega)}^2}$$

and, further, this minimum is achieved if and only if $u \in \text{span}\{\phi_1\}$.

The proof of Theorem 2 is an exercise listed at the end of these notes. The above is sometimes referred to as the Rayleigh quotient characterization of the principle eigenvalue λ_1 and, in particular, it shows that $\lambda_1^{-1/2}$ is the *sharp* Poincaré constant for the domain Ω . Specifically, we have

$$\int_{\Omega} |u|^2 dx \leq \frac{1}{\lambda_1} \int_{\Omega} |Du|^2 dx \text{ for all } u \in H^1_0(\Omega)$$

with equality if and only if $u = \gamma \phi_1$ for some constant $\gamma \in \mathbb{R}$.

We now use Theorem 2 to prove that the principle eigenfunction ϕ_1 may be chosen to be either non-negative or non-positive. To this end, we need the following two technical lemmas.

Lemma 1 (The Chain Rule). Let $\Omega \subset \mathbb{R}^n$ be open and bounded, and suppose $F \in C^1(\mathbb{R})$ is such that $F' \in L^{\infty}(\mathbb{R})$. If $u \in H^1(\Omega)$ then $F(u) \in H^1(\Omega)$ with

$$\partial_{x_i} F(u) = F'(u) u_{x_i}$$

for each j = 1, 2, ..., n.

Proof. This is an exercise. I suggest either using the global approximation of $H_0^1(\Omega)$ by $H_0^1(\Omega) \cap C^{\infty}(\Omega)$, or else using molifiers.

Lemma 2 (See Exercise #18 in Chapter 5 of Evans). Suppose $\Omega \subset \mathbb{R}^n$ is bounded and that $u \in H^1(\Omega)$. Then $|u| \in H^1(\Omega)$ with $D|u| = \operatorname{sign}(u)Du$ a.e. in Ω .

Proof. Given $u \in H_0^1(\Omega)$ we decompose $|u| = u^+ + u^-$ where

$$u^+ = \max\{u, 0\}, \quad u^- = -\min(u, 0)$$

and note to show $|u| \in H^1(\Omega)$ it is enough to prove that $u^+, u^- \in H^1(\Omega)$. Here, we concentrate on the function u^+ . To get in a context where we can use the Chain Rule in Lemma 1, observe that

$$u^+ = \lim_{\epsilon \to 0^+} F_{\epsilon}(u)$$
 a.e.,

where

$$F_{\epsilon}(z) := \begin{cases} (z^2 + \epsilon^2)^{1/2} - \epsilon, & \text{if } z \ge 0\\ 0, & \text{if } z < 0 \end{cases}$$

can be easily seen to satisfy $F_{\epsilon} \in C^1(\mathbb{R})$ with

$$F'_{\epsilon}(z) \begin{cases} \frac{z}{\sqrt{z^2 + \epsilon^2}}, & \text{if } z \ge 0\\ 0, & \text{if } z < 0. \end{cases}$$

In particular, note $||F'_{\epsilon}||_{L^{\infty}(\mathbb{R})} = 1$. By the Chain Rule, it follows that for each $\epsilon > 0$ we have $F_{\epsilon}(u) \in H^{1}(\Omega)$ with $DF_{\epsilon}(u) = F'_{\epsilon}(u)Du$, i.e. for every test function $\phi \in C^{\infty}_{c}(\Omega)$ we have

$$\int_{\Omega} F_{\epsilon}(u) D\phi \, dx = -\int_{u>0} \left(\frac{uDu}{\sqrt{u^2 + \epsilon^2}}\right) \phi \, dx.$$

The result for u^+ now follows by taking $\epsilon \to 0^+$ and using Dominated Convergence. A similar argument applies to u^- , which completes the proof.

With the above results in hand, let ϕ_1 be a weak eigenfunction associated to λ_1 . By Lemma 2 it follows that $|\phi_1| \in H_0^1(\Omega)$ with $|D|\phi_1|| = |D\phi_1|$. In particular, using Theorem 2 we have

$$\frac{\int_{\Omega} |D|\phi_1||^2 \, dx}{\||\phi_1|\|_{L^2(\Omega)}^2} = \frac{\int_{\Omega} |D\phi_1|^2 \, dx}{\|\phi_1\|_{L^2(\Omega)}^2} = \lambda_1,$$

which, by again by Theorem 2, implies that $\phi_1 = \alpha |\phi_1|$ for some constant $\alpha = \pm 1$. In particular, it follows that the principle eigenfunction may be chosen to be either non-negative on Ω or non-positive on Ω .

Our next step in the proof of Theorem 1 is to prove that, in fact, ϕ_1 must be non-zero on the interior of Ω . The main ingredient here is the following.

Theorem 3 (Strong Maximum Principle). Let $\Omega \subset \mathbb{R}^n$ be open, bounded and connected, and suppose that $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies

$$-\Delta u \ge 0$$
 in Ω .

If u attains its minimum over $\overline{\Omega}$ at an interior point of Ω , then u must be a constant in Ω .

To see this, recall by the Boundary Regularity Theory for uniformly elliptic operators on Ω that any $H_0^1(\Omega)$ -eigenfunction associated to $-\Delta$ must belong to $C^{\infty}(\overline{\Omega})$. Indeed, the Boundary Regularity Theory guarantees that if $f \in H^m(\Omega)$ and $u \in H_0^1(\Omega)$ is a weak solution of

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega_f \end{cases}$$

then $u \in H^{m+2}(\Omega)$. If λ_j is an $H_0^1(\Omega)$ eigenvalue of $-\Delta$ with eigenfunction ϕ_j , it then follows from the identity $-\Delta\phi_j = \lambda_j\phi_j$ and Sobolev embedding that $\phi_j \in C^{\infty}(\overline{\Omega})$, as claimed.

In particular, it follows by the above observation that $|\phi_1| \in C^{\infty}(\overline{\Omega})$ must be a smooth solution of the PDE

$$-\Delta |\phi_1| = \lambda_1 |\phi_1|.$$

Since $\lambda_1 > 0$, the Strong Maximum Principle implies that if $|\phi_1|$ attains its minimum value in Ω then it must be constant: specifically $|\phi_1|$ would have to be identically zero since $|\phi_1| \in H_0^1(\Omega)$. Since $|\phi_1|$ is non-trivial by virtue of being an eigenfunction, it follows that $|\phi_1|$ can not achieve its minimum value on the interior of Ω . Since clearly $|\phi_1| \ge 0$ on $\overline{\Omega}$ and since $|\phi_1| = 0$ on $\partial\Omega$, it follows that we must have

$$|\phi_1(x)| > 0$$
 for all $x \in \Omega$

which implies that the principle eigenfunction must be sign definite on Ω .

To complete the proof of Theorem 1, it remains to show that the simplicity of λ_1 . To this end, let ϕ_1 be as above and suppose that $\psi \in H_0^1(\Omega)$ is some other eigenfunction associated to λ_1 . By our previous work, we know that $\psi \in C^{\infty}(\overline{\Omega})$ and $|\psi(x)| > 0$ for all $x \in \Omega$. Fixing $x_0 \in \Omega$ it follows that the function

$$\Phi(x) := \phi_1(x_1)\psi(x) - \psi(x_0)\phi_1(x)$$

is also a smooth eigenfunction associated to λ_1 . However, since $\Phi(x_0) = 0$ it follows by the Strong Maximum Principle that $\Phi(x) = 0$ for all $x \in \Omega$, which implies that

$$\psi(x) = \left(\frac{\psi(x_0)}{\phi_1(x_0)}\right)\phi_1(x),$$

i.e. ψ must be a multiple of ϕ_1 . This completes the proof of Theorem 1.

3 Exercises

Complete the following exercises.

1. Let $U \subset \mathbb{R}^n$ be open and bounded and consider the Dirichlet eigenvalue problem

$$\begin{cases} -\Delta u = \lambda u \text{ in } U\\ u = 0 \text{ on } \partial U. \end{cases}$$

Let $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots \rightarrow \infty$ be the sequence of Dirichlet eigenvalues and $\{\phi_j\}_{j=1}^{\infty}$ the corresponding eigenfunctions in $H_0^1(U)$, i.e. suppose $-\Delta \phi_j = \lambda_j \phi_j$.

- (a) Prove the variational characterization of λ_1 provided in Theorem 2.
- (b) Continuing, prove that for all $k \in \mathbb{N}$, $k \ge 2$, we have the following variational characterization of the eigenvalue λ_k :

$$\lambda_k = \min_{u \in H_0^1(U) \setminus \{0\}: u \in \Sigma_{k-1}^\perp} \frac{\int_U |Du|^2 dx}{\int_U |u|^2 dx}$$

where $\Sigma_{k-1} := \overline{\operatorname{span}\{\phi_1, \phi_2, \dots, \phi_{k-1}\}}$ and \perp means orthogonal in $H_0^1(U)$. (Note: the above two results can be useful for finding upper bounds on the λ_k , since it gives λ_k as the minimum of something.)

- (c) Use the above two results to prove the Dirichlet eigenvalues are "monotone with respect to domain". That is, given two open and bounded sets $U, V \in \mathbb{R}^n$, let $\lambda_k(V)$ and $\lambda_k(U)$ denote the k-th Dirichlet eigenvalues of $-\Delta$ on the domains V and U respectively. Prove that if $V \subset U$, then $\lambda_k(V) \ge \lambda_k(U)$. (Note: This result if FALSE for the Neumann eigenvalues...)
- (d) Prove the *Caurant minimax principle* for this problem: that is, prove that for all $k \in \mathbb{N}$ the eigenvalue λ_k can be expressed variationally as

$$\lambda_k = \max_{S \in \Omega_{k-1}} \left(\min_{u \in S^\perp} \frac{\int_U |Du|^2 dx}{\int_U |u|^2 dx} \right).$$

Here, Ω_{k-1} denotes the collection of all (k-1)-dimensional subspaces of $H_0^1(U)$. (Note: The Courant principle can be useful for finding a *lower* bound on λ_k , since it gives λ_k as the maximum of something.)

- 2. Prove Lemma 1.
- 3. Fill in the details concerning the regularity of the eigenfunctions of $-\Delta$. That is, prove that if ϕ_j is a $H_0^1(\Omega)$ -eigenfunction associated to $-\Delta$, then $\phi_j \in C^{\infty}(\overline{\Omega})$. For this, it will be helpful to see the General Sobolev Embedding Theorem stated in Theorem 6 in Section 5.7 of Evans, along with the higher-order boundary regularity result in Theorem 5 in Section 6.3 of Evans.
- 4. Look up and study the proof of the Strong Maximum Principle. Note it relies on two previous results: the Weak Maximum Principle, and Hopf's Lemma... for complete-ness, you should study these results as well.