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1 Introduction

There has been several questions concerning the simplicity of the principle eigenvalue for
uniformly elliptic operators on bounded domains. In these notes, I aim to present the big
idea in at least the symmetric case. For those interested in the non-symmetric case, see
Theorem 3 in Section 6.5 in Evans.

To this end, let Ω ⊂ Rn be open, bounded and connected, and consider the eigenvalue
problem {

−∆u = λu, in Ω

u = 0, on ∂Ω.
(1)

As we know from class, non-trivial solutions of (1) exist only when λ is an H1
0 (Ω) eigenvalue

of the operator −∆. Such eigenvalues form an increasing sequence

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . .↗ +∞

and each eigenvalue λj has corresponding eigenfunction φj ∈ H1
0 (Ω). Above, each eigenvalue

is listed with respect to its multiplicity. That is, if λj has, say, m linearly independent
eigenfunctions, then it is listed exactly m times in the above list.

Theorem 1 (Principle Eigenvalue Theorem). The principle eigenvalue λ1 for the operator
−∆ on H1

0 (Ω) is simple, that is, there exists φ1 ∈ H1
0 (Ω) such that

Ker (−∆− λ1I) = span {φ1} .

Furthermore, the principle eigenfunction φ1 may be chosen to be strictly positive on Ω.

The above result is very powerful, and applies in various other contexts2. Its proof is
primarily composed of 2 main components:

(1) A variational characterization of the principle eigenvalue λ1.

1Copyright c©2019 by Mathew A. Johnson (matjohn@ku.edu). This work is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

2In particular, this result continues to be true even for non-symmetric uniformly elliptic differential
operators on Ω. See Theorem 3 in Section 6.5.2 in Evans. The proof, however, is considerably more
complicated...
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(2) The Strong Maximum Principle for uniformly elliptic operators on Ω

Once these are established, the proof proceeds by using the variational formulation to
prove that φ1 may be chosen to be either non-negative or non-positive on Ω. Once this is
established, the Strong Maximum Principle is then used to conclude that φ1 can not vanish
on the interior of Ω. Finally, the simplicity of λ1 follows by another application of the
Strong Maximum Principe.

2 Proof of the Principle Eigenvalue Theorem

Our first step in the proof of Theorem 1 is to establish the following fundamental result.

Theorem 2 (Variational Characterization of λ1). Let Ω ⊂ Rn be open and bounded with
smooth boundary, and let λ1 be the principle eigenvlaue of −∆ on H1

0 (Ω) with eigenfunction
φ1. Then

λ1 = min
u∈H1

0 (Ω)

∫
Ω |Du|

2dx

‖u‖2
L2(Ω)

and, further, this minimum is achieved if and only if u ∈ span{φ1}.

The proof of Theorem 2 is an exercise listed at the end of these notes. The above is
sometimes referred to as the Rayleigh quotient characterization of the principle eigenvalue

λ1 and, in particular, it shows that λ
−1/2
1 is the sharp Poincaré constant for the domain Ω.

Specifically, we have ∫
Ω
|u|2dx ≤ 1

λ1

∫
Ω
|Du|2dx for all u ∈ H1

0 (Ω)

with equality if and only if u = γφ1 for some constant γ ∈ R.
We now use Theorem 2 to prove that the principle eigenfunction φ1 may be chosen to

be either non-negative or non-positive. To this end, we need the following two technical
lemmas.

Lemma 1 (The Chain Rule). Let Ω ⊂ Rn be open and bounded, and suppose F ∈ C1(R)
is such that F ′ ∈ L∞(R). If u ∈ H1(Ω) then F (u) ∈ H1(Ω) with

∂xjF (u) = F ′(u)uxj

for each j = 1, 2, . . . , n.

Proof. This is an exercise. I suggest either using the global approximation of H1
0 (Ω) by

H1
0 (Ω) ∩ C∞(Ω), or else using molifiers.

Lemma 2 (See Exercise #18 in Chapter 5 of Evans). Suppose Ω ⊂ Rn is bounded and that
u ∈ H1(Ω). Then |u| ∈ H1(Ω) with D|u| = sign(u)Du a.e. in Ω.
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Proof. Given u ∈ H1
0 (Ω) we decompose |u| = u+ + u− where

u+ = max{u, 0}, u− = −min(u, 0)

and note to show |u| ∈ H1(Ω) it is enough to prove that u+, u− ∈ H1(Ω). Here, we
concentrate on the function u+. To get in a context where we can use the Chain Rule in
Lemma 1, observe that

u+ = lim
ε→0+

Fε(u) a.e.,

where

Fε(z) :=

{
(z2 + ε2)1/2 − ε, if z ≥ 0

0, if z < 0

can be easily seen to satisfy Fε ∈ C1(R) with

F ′ε(z)


z√

z2 + ε2
, if z ≥ 0

0, if z < 0.

In particular, note ‖F ′ε‖L∞(R) = 1. By the Chain Rule, it follows that for each ε > 0 we
have Fε(u) ∈ H1(Ω) with DFε(u) = F ′ε(u)Du, i.e. for every test function φ ∈ C∞c (Ω) we
have ∫

Ω
Fε(u)Dφ dx = −

∫
u>0

(
uDu√
u2 + ε2

)
φ dx.

The result for u+ now follows by taking ε → 0+ and using Dominated Convergence. A
similar argument applies to u−, which completes the proof.

With the above results in hand, let φ1 be a weak eigenfunction associated to λ1. By
Lemma 2 it follows that |φ1| ∈ H1

0 (Ω) with |D|φ1|| = |Dφ1|. In particular, using Theorem
2 we have ∫

Ω |D|φ1||2 dx
‖|φ1|‖2L2(Ω)

=

∫
Ω |Dφ1|2 dx
‖φ1‖2L2(Ω)

= λ1,

which, by again by Theorem 2, implies that φ1 = α|φ1| for some constant α = ±1. In par-
ticular, it follows that the principle eigenfunction may be chosen to be either non-negative
on Ω or non-positive on Ω.

Our next step in the proof of Theorem 1 is to prove that, in fact, φ1 must be non-zero
on the interior of Ω. The main ingredient here is the following.

Theorem 3 (Strong Maximum Principle). Let Ω ⊂ Rn be open, bounded and connected,
and suppose that u ∈ C2(Ω) ∩ C(Ω) satisfies

−∆u ≥ 0 in Ω.

If u attains its minimum over Ω at an interior point of Ω, then u must be a constant in Ω.
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To see this, recall by the Boundary Regularity Theory for uniformly elliptic operators
on Ω that any H1

0 (Ω)-eigenfunction associated to −∆ must belong to C∞(Ω). Indeed, the
Boundary Regularity Theory guarantees that if f ∈ Hm(Ω) and u ∈ H1

0 (Ω) is a weak
solution of {

−∆u = f in Ω

u = 0 on ∂Ω,

then u ∈ Hm+2(Ω). If λj is an H1
0 (Ω) eigenvalue of −∆ with eigenfunction φj , it then follows

from the identity −∆φj = λjφj and Sobolev embedding that φj ∈ C∞(Ω), as claimed.
In particular, it follows by the above observation that |φ1| ∈ C∞(Ω) must be a smooth

solution of the PDE
−∆|φ1| = λ1|φ1|.

Since λ1 > 0, the Strong Maximum Principle implies that if |φ1| attains its minimum value
in Ω then it must be constant: specifically |φ1| would have to be identically zero since
|φ1| ∈ H1

0 (Ω). Since |φ1| is non-trivial by virtue of being an eigenfunction, it follows that
|φ1 can not achieve its minimum value on the interior of Ω. Since clearly |φ1| ≥ 0 on Ω and
since |φ1| = 0 on ∂Ω, it follows that we must have

|φ1(x)| > 0 for all x ∈ Ω

which implies that the principle eigenfunction must be sign definite on Ω.

To complete the proof of Theorem 1, it remains to show that the simplicity of λ1. To this
end, let φ1 be as above and suppose that ψ ∈ H1

0 (Ω) is some other eigenfunction associated
to λ1. By our previous work, we know that ψ ∈ C∞(Ω) and |ψ(x)| > 0 for all x ∈ Ω. Fixing
x0 ∈ Ω it follows that the function

Φ(x) := φ1(x1)ψ(x)− ψ(x0)φ1(x)

is also a smooth eigenfunction associated to λ1. However, since Φ(x0) = 0 it follows by the
Strong Maximum Principle that Φ(x) = 0 for all x ∈ Ω, which implies that

ψ(x) =

(
ψ(x0)

φ1(x0)

)
φ1(x),

i.e. ψ must be a multiple of φ1. This completes the proof of Theorem 1.

3 Exercises

Complete the following exercises.

1. Let U ⊂ Rn be open and bounded and consider the Dirichlet eigenvalue problem{
−∆u = λu in U

u = 0 on ∂U.
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Let λ1 ≤ λ2 ≤ λ3 ≤ . . . → ∞ be the sequence of Dirichlet eigenvalues and {φj}∞j=1

the corresponding eigenfunctions in H1
0 (U), i.e. suppose −∆φj = λjφj .

(a) Prove the variational characterization of λ1 provided in Theorem 2.

(b) Continuing, prove that for all k ∈ N, k ≥ 2, we have the following variational
characterization of the eigenvalue λk:

λk = min
u∈H1

0 (U)\{0}:u∈Σ⊥k−1

∫
U |Du|

2dx∫
U |u|2dx

where Σk−1 := span{φ1, φ2, . . . , φk−1} and ⊥ means orthogonal in H1
0 (U). (Note:

the above two results can be useful for finding upper bounds on the λk, since it
gives λk as the minimum of something.)

(c) Use the above two results to prove the Dirichlet eigenvalues are “monotone with
respect to domain”. That is, given two open and bounded sets U, V ∈ Rn, let
λk(V ) and λk(U) denote the k-th Dirichlet eigenvalues of −∆ on the domains
V and U respectively. Prove that if V ⊂ U , then λk(V ) ≥ λk(U). (Note: This
result if FALSE for the Neumann eigenvalues...)

(d) Prove the Caurant minimax principle for this problem: that is, prove that for
all k ∈ N the eigenvalue λk can be expressed variationally as

λk = max
S∈Ωk−1

(
min
u∈S⊥

∫
U |Du|

2dx∫
U |u|2dx

)
.

Here, Ωk−1 denotes the collection of all (k− 1)-dimensional subspaces of H1
0 (U).

(Note: The Courant principle can be useful for finding a lower bound on λk,
since it gives λk as the maximum of something.)

2. Prove Lemma 1.

3. Fill in the details concerning the regularity of the eigenfunctions of −∆. That is, prove
that if φj is a H1

0 (Ω)-eigenfunction associated to −∆, then φj ∈ C∞(Ω). For this,
it will be helpful to see the General Sobolev Embedding Theorem stated in Theorem
6 in Section 5.7 of Evans, along with the higher-order boundary regularity result in
Theorem 5 in Section 6.3 of Evans.

4. Look up and study the proof of the Strong Maximum Principle. Note it relies on two
previous results: the Weak Maximum Principle, and Hopf’s Lemma... for complete-
ness, you should study these results as well.
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