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1 Introduction

To this point, we have been using linear functional analytic tools (eg. Riesz Representation
Theorem, etc.) to study the existence and properties of solutions to linear PDE. This has
largely followed a well developed general theory which proceeded quite methodoligically
and has been widely applicable. As we transition to nonlinear PDE theory, it is important
to understand that there is essentially no widely developed, overaching theory that applies
to all such equations. The closest thing I would way that exists is the famous Cauchy-
Kovalyeskaya Theorem, which asserts quite generally the local existence of solutions to
systems of partial differential equations equipped with initial conditions on a “noncharac-
teristic” surface. However, this theorem requires the coefficients of the given PDE system,
the initial data, and the surface where the IC is described to all be real analytic. While this
is a very severe restriction, it turns out that it can not be removed. For this reason, and
many more, the Cauchy-Kovalyeskaya Theorem is of little practical importance (although,
it is obviously important from a historical context... hence why it is usually studied in Math
950).

1Copyright c©2020 by Mathew A. Johnson (matjohn@ku.edu). This work is licensed under a Creative
Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
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Throughout the remainder of the class, we will be studying a variety of analytical
techniques to approach the existence problem in nonlinear PDE theory, each of which is
applicable in some cases and not in others. In that sense, the rest of the class will likely
not feel as cohesive as the first part, and this is true and, unfortunatley, simply the nature
of the subject.

In this chapter, we provide a brief introduction to the use of fixed point methods in
the study of nonlinear PDE theory. I will only provide some simple applications of one
of the most basic fixed point arguments (the Contraction Mapping Principle). There are,
of course, many other more sophisticated fixed point methods available and such methods
could be the topic of a final project in the class.

2 Contraction Mapping Principle

We begin our study of nonlinear PDE with the following abstract, yet basic, result.

Theorem 1 (Contraction Mapping Principle). Let (X, d) be a complete metric space, and
assume

A : X → X

is a contraction on X, i.e. there exists a constant γ ∈ (0, 1) such that

d(A(x), A(y)) ≤ γd(x, y)

for all x, y ∈ X. Then there exists a unique x0 ∈ X such that A(x0) = x0, i.e. A has a
unique fixed point in X.

Proof. The proof is based on a simple iteration scheme. Let x1 ∈ X be arbitrary, and
inductively define

xk+1 = A(xk), k ∈ N

We claim that the sequence {xk} is Cauchy in X. Indeed, notice if k ∈ N then

d(A(xk+1), A(xk)) ≤ γd(A(xk), A(xk−1) ≤ . . . ≤ γkd(x2, x1)

and hence for arbitrary k, ` ∈ N with k ≥ ` we have

d(xk, x`) = d(A(xk−1), A(x`−1)) ≤
k−2∑
j=`−1

d(A(xj+1), A(xj)) ≤ d(x2, x1)

k−2∑
j=`−1

γj .

Since γ ∈ (0, 1) we have
∑∞

j=1 γ
j < ∞ and hence the sequence {xk} is Cauchy in X, as

claimed. Since X is complete, it follows three exists a x0 ∈ X such that xk → x0 in X as
k →∞. Since

xk+1 = A(xk)

and since A is continuous, taking k →∞ gives x0 = A(x0) so that x0 is a fixed point of A.
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Moreover, if x̃ is any other fixed point of A, note that

d(x0, x̃) = d(A(x0), A(x̃)) ≤ γd(x0, x̃).

Since γ ∈ (0, 1), it follows that x̃ = x0, establishing uniqueness of the fixed point.

The above theorem, sometimes called the Banach Fixed Point Theorem, is incredibly
simple yet powerful. It is especially powerful in the context of linear problems, as the next
example illustrates.

Example: Let [a, b] ⊂ R be a bounded interval and suppose k : [a, b] × [a, b] → R is a
continuous function. Given a continuous function g : [a, b] → R consider the following
Fredholm integral equation: find f ∈ C([a, b]) such that

f(x) = g(x) +

∫ b

a
k(x, y)f(y)dy. (1)

Such an integral equation is ideally setup for the use of the Contraction Mapping Theorem2.
Indeed, note if we fix g ∈ C([a, b]) and define the map

C([a, b]) 3 f 7→ T (f)(x) := g(x) +

∫ b

a
k(x, y)f(y)dy

then a continuous solution to (1) is simply a fixed point of the map T . To apply the
contraction mapping theorem here, we first note that if f ∈ C([a, b]) then given x1, x2 ∈ [a, b]
we have

T (f)(x1)− T (f)(x2) =

∫ b

a
(k(x1, y)− k(x2, y)) f(y)dy

so that, using the fact that continuous functions on compact domains are uniformly contin-
uous, we see that T (f) is continuous on [a, b]. This verifies that C([a, b]) is an invariant set
for T , i.e. that

T : C([a, b])→ C([a, b]).

To see further that T is a contraction on all of C([a, b]), simply observe that if f1, f2 ∈
C([a, b]) then the triangle inequality gives for all x ∈ [a, b]

|T (f1)(x)− T (f2)(x)| ≤
∫ b

a
|k(x, y)||f1(y)− f2(y)|dy

≤ ‖f1 − f2‖L∞([a,b]) sup
x∈[a,b]

∫ b

a
|k(x, y)|dy

2Here, recall that since the uniform limit of continuous functions is continuous, the space C([a, b])
equipped with the L∞([a, b]) norm is a Banach space.
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so that, in particular,

‖T (f1)− T (f2)‖L∞([a,b]) ≤

(
sup
x∈[a,b]

∫ b

a
|k(x, y)|dy

)
‖f1 − f2‖L∞([a,b]).

It follows that if k is such that

sup
x∈[a,b]

∫ b

a
|k(x, y)|dy < 1

then T is a contraction on all of C([a, b]) and hence, by the Contraction Mapping Theorem,
there exists a unique f ∈ C([a, b]) such that T (f) = f , as desired.

Note in the above example that the fact that the map T was affine in f is what led to
the mapping T to be a contraction on the entire space C([a, b]). For nonlinear equations,
however, it is often the case that the mapping A is only a contraction on a particular subset
of the Banach space X. For this reason, the following variant of Theorem 1 is often useful.

Theorem 2. Let (X, d) be a complete metric space, and assume A : X → X. Furthermore,
assume there exists an a ∈ X and an r > 0 such that

(i) The ball B(a, r) := {x ∈ X : d(x, a) < r} is an invariant set for A, i.e.

A : B(a, r)→ B(a, r).

(ii) the map A is a contraction on B(a, r), i.e. there exists a constant γ ∈ (0, 1) such that

d(A(x), A(y)) ≤ γd(x, y)

for all x, y ∈ B(a, r).

Then there exists a x0 ∈ B(a, r) such that A(x0) = x0 and, furthermore, this is the unique
fixed point of A inside the ball B(a, r).

The proof of the above similar is similar to that for the Contraction Mapping Principle,
and is hence omitted3. We now employ the above result in a number of examples.

3 Example: Nonlinear Elliptic PDE

For our first example, let Ω ⊂ R3 be open and bounded with smooth boundary, and consider
the nonlinear elliptic BVP {

∆u+ λu+ u2 = g, in Ω

u = 0 on ∂Ω,
(2)

3Of course, students should provide a full proof themselves!
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where λ ∈ R is a constant and g ∈ L2(Ω) is given. Note that due to the nonlinear term,
our first job is to find a function space where the PDE makes sense. Specifically, since we
require g ∈ L2(Ω) we need to work in a function space where the left hand side of (2) is an
L2(Ω) function and, ideally, where the boundary condition is enforced. I claim a natural
candidate for this space is

X = H2(Ω) ∩H1
0 (Ω)

equipped with the H2(Ω) norm since, in particular, if u ∈ X then ∆u + λu ∈ L2(Ω) and
u = 0 (in the trace sense) on ∂Ω. As for the nonlinear term, recall by Sobolev embedding
that if k ∈ N with k > n

2 , n being the spatial dimension, then Hk(Ω) is continuously
embedded in C0(Ω) ∩ L∞(Ω). Since here n = 3 and 2 > 3

2 this implies in the present
context that

H2(Ω) ∩H1
0 (Ω) ⊂ C0(Ω) ∩ L∞(Ω)

with the continuity estimate

‖v‖L∞(Ω) ≤ C‖v‖H2(Ω) ∀v ∈ H2(Ω) ∩H1
0 (Ω).

In particular, if u ∈ H2(Ω) ∩H1
0 (Ω) then we know u2 ∈ L2(Ω) with

‖u2‖L2(Ω) ≤ C‖u‖2H2(Ω)

for some constant C > 0 (independent of u). It follows that the equation is at least makes
sense in L2(Ω) for all u ∈ X.

As for the solvability of (2), we begin by considering the nonlinear term as a nonhomo-
geneous term. In particular, for each u ∈ X we set

h(u) = g − u2 ∈ L2(Ω)

and consider the linear elliptic BVP{
∆w + λw = h(u), in Ω

w = 0 on ∂Ω,
(3)

By our elliptic existence and (boundary) regularity theory4, it follows that if λ /∈ σp(−∆)
then there exists a unique weak solution w̃ ∈ H2(Ω)∩H1

0 (Ω) of (3). Since the weak solution
will depends on the nonhomogeneous term, this naturally defines a map

A : X → X, A(u) = w̃,

where w̃ is the unique weak solution of (3). The main observation here is that, by construc-
tion, fixed points of A are weak solutions of (2).

To prove A has a fixed point inX, we employ the Contraction Mapping Theorem. To this
end,, given u, ũ ∈ X notice the difference A(u)−A(ũ) satisfies (3) with the nonhomogeneous

4Specifically, see Theorem 4 in Section 6.4 of Evans.
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term replaced by u2 − ũ2. Using the continuity of the weak solution operator associated to
the linear problem (3) it follows that

‖A(u)−A(ũ)‖H2(Ω) ≤ C
∥∥u2 − ũ2

∥∥
L2(Ω)

≤ C
(
‖u‖H2(Ω) + ‖ũ‖H2(Ω)

)
‖u− ũ‖H2(Ω).

In particular, we see that the quadratic nature of the nonlinearity implies that A is not
a contraction on all of X and hence the classical Contraction Mapping Theorem given by
Theorem 1 does not apply.

Nevertheless, we can attempt to apply the variant of the Contraction Mapping Theorem
given by Theorem 2. To this end, observe that given u ∈ X we have, again by the continuity
of the weak solution operator associated to (3),

‖A(u)‖H2(Ω) ≤ C‖h(u)‖L2(Ω)

≤ C
(
‖g‖L2(Ω) + ‖u2‖L2(Ω)

)
≤ C

(
‖g‖L2(Ω) + ‖u‖2H2(Ω)

)
.

Consequently, given r > 0 we see that if u, ũ ∈ BX(0, r) then{
‖A(u)‖H2(Ω) ≤ C1

(
‖g‖L2(Ω) + r2

)
‖A(u)−A(ũ)‖H2(Ω) ≤ C2(2r)‖u− ũ‖H2(Ω)

for some constants C1, C2 > 0. In order for BX(0, r) to be an invariant set for A we need
to choose r such that

C1

(
‖g‖L2(Ω) + r2

)
< r, (4)

which is possible provided that ‖g‖L2(Ω) is sufficiently small. Indeed, given ‖g‖L2(Ω) suffi-
ciently small (depending on the size of C1) there exists an r̃ > 0 such that (4) holds for
all r ∈ (0, r̃). Furthermore, in order for A to be a contraction on BX(0, r) we clearly need
r < 1

2C2
. It follows that if ‖g‖L2(Ω) is sufficiently small and

0 < r0 < min

{
r̃,

1

2C2

}
then

A : BX(0, r0)→ BX(0, r0)

is a contraction.
By Theorem 2 it follows that if λ /∈ σp(−∆) then for ‖g‖L2(Ω) sufficiently small there

exists a unique u0 ∈ BX(0, r0) such that A(u0) = u0, and hence u0 is a weak solution of
(2). Moreover, this is the unique weak solution of (2) of small norm.
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Before continuing to more examples, there are several remarks to make about the above
result. First, note it was assumed throughout that λ /∈ σp(−∆). In particular, for such λ
the unique weak solution (with small norm) of the problem{

∆u+ λu+ u2 = 0, in Ω

u = 0 on ∂Ω,
(5)

is clearly u = 0. An interesting question to ask is what happens if λ ∈ σp(−∆). At such a
point, multiple non-trivial solutions may “bifurcate” from the trivial branch of solutions5.
The construction of such non-trivial solutions of (5) is the subject of “local bifurcation
theory” and is typically completed via a procedure known as a Lyapunov-Schmidt reduction.
Interested students are encouraged to consider this topic for a final project.

Finally, as the above example demonstrates, when applying the Contraction Mapping
Theorem to nonlinear problems one must typically take certain parameters to be small
to ensure the contraction property holds (e.g. r0 and ‖g‖L2(Ω) in the above example).
Sometimes, however, one can eliminate teh need for such smallness assumptions through
iteration, as the next example demonstrates.

4 Example: Nonlinear Reaction Diffusion

For this example, let Ω ⊂ Rn be open and bounded with smooth boundary, and consider
the IVBVP 

ut −∆u = f(u), in Ω× [0, T ]

u = 0, on ∂Ω× [0, T ]

u(x, 0) = g(x), for x ∈ Ω,

(6)

where here g ∈ H1
0 (Ω) and T > 0 is finite and fixed (but arbitrary). Further, we suppose

the nonlinearity f : R → R is globally Lipschitz 6, i.e. there exists a constant C > 0 such
that

|f(z)− f(z̃)| ≤ C|z − z̃| ∀z, z̃ ∈ R. (7)

In particular, observe that for all z ∈ R we have

|f(z)| = |f(0) + (f(z)− f(0))| ≤ C(1 + |z|) (8)

for some constant C > 0. It follows that f : L2(Ω)→ L2(Ω). The goal of this exercise is to
prove there exists a unique weak solution of (6), i.e. there exists a unique

u ∈ C((0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω))

such that u(0) = g and

〈ut, v〉L2(Ω) +B[u, v] = 〈f(u), v〉L2(Ω)

5This is akin to asking in Math 766 what happens at a point where the implicit function theorem fails.
6As we will discuss in Section 5 later, this assumption is not practical in most applications...
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for a.e. t ∈ [0, T ] and for all v ∈ H1
0 (Ω). As we will see, this is possible via the Contraction

Mapping Theorem provided the time of existence is sufficiently small.
To this end, we aim to apply the Contraction Mapping Theorem on the space

Xτ := C([0, τ ];L2(Ω))

where here τ ∈ (0, T ] will be chosen later, and where we equip Xτ with the natural norm

‖v‖τ := max
0≤t≤τ

‖v(t)‖L2(Ω).

As with the previous example, we begin by considering the nonlinearity as an inhomogeneous
term. Given u ∈ Xτ and note that by (8) we have∫ τ

0
‖f(u(t))‖2L2(Ω)dt =

∫ τ

0

(∫
Ω
|f(u(x, t))|2dx

)
dt

≤ C
∫ τ

0

(∫
Ω

(1 + |u(x, t)|)2 dx

)
dt

≤ Cτ ‖1 + |u|‖2τ

for all t ∈ [0, τ ] so that, in particular

u ∈ Xτ ⇒ f(u) ∈ L2([0, τ ];L2(Ω)).

For u ∈ Xτ fixed, we now consider the linear parabolic IVBVP
wt −∆w = f(u), in Ω× [0, T ]

w = 0, on ∂Ω× [0, T ]

w(x, 0) = g(x), for x ∈ Ω,

(9)

and note by our parabolic existence theory, since f(u) ∈ L2([0, τ ];L2(Ω)) there exits a
unique weak solution

w̃ ∈ C((0, τ ];H1
0 (Ω)) ∩ C1([0, τ ];L2(Ω))

such that for all v ∈ H1
0 (Ω) we have

〈w̃t, v〉L2(Ω) +B[w̃, v] = 〈f(u), v〉L2(Ω)

for a.e. t ∈ [0, τ ]. Since the weak solution will depend on the nonhomogeneous term, this
naturally defines a map

A : Xτ → Xτ , A(u) = w̃

where w̃ is the unique weak solution of (9). The main observation is that, by construction,
fixed points of A are weak solutions of (6).
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To prove A has a fixed point in Xτ , we attempt to use the Contraction Mapping Theo-
rem. To this end, given u1, u2 ∈ Xτ set wj = A(uj) and note that the difference v := w1−w2

weakly satisfies the IVBVP
(w1 − w2)t −∆(w1 − w2) = f(u1)− f(u2), in Ω× [0, T ]

w1 − w2 = 0, on ∂Ω× [0, T ]

(w1 − w2)(x, 0) = 0, for x ∈ Ω,

which, by the weak formulation, implies that

1

2

d

dt
‖w1 − w2‖2L2(Ω) +

∫
Ω
|D(w1 − w2)|2dx = 〈f(u1)− f(u2), w1 − w2〉L2(Ω) .

Now, observe by the Cauchy-with-ε inequality we have∣∣∣〈f(u1)− f(u2), w1 − w2〉L2(Ω)

∣∣∣ ≤ 1

4ε
‖f(u1)− f(u2)‖2L2(Ω) + ε‖w1 − w2‖2L2(Ω)

≤ 1

4ε
‖f(u1)− f(u2)‖2L2(Ω) + Cε

∫
Ω
|D(w1 − w2)|2dx,

where the last inequality follows by Poincaré. By choosing ε > above so that Cε < 1 we
have

1

2

d

dt
‖w1 − w2‖2L2(Ω) ≤ C‖f(u1)− f(u2)‖2L2(Ω)

which, using again that f is globally Lipshitz, gives

1

2

d

dt
‖w1 − w2‖2L2(Ω) ≤ C‖u1 − u2‖2L2(Ω).

Integrating and using the initial condition for w1 − w2, we find for all t ∈ [0, τ ] we have

‖w1 − w2‖2L2(Ω)(t) ≤ C
∫ t

0
‖u1 − u2‖2L2(Ω)(s)ds ≤ Cτ‖u1 − uw‖τ . (10)

which gives (taking max over all t ∈ [0, τ ] yields the estimate

‖A(u1)−A(u2)‖2τ ≤ Cτ‖u1 − u2‖2τ (11)

valid for some constant C > 0 which depends only on the geometry of Ω (via Poincaré)
and the Lipschitz constant associated to f . In particular, it does not depend on the initial
condition.

From above, it follows that A is a contraction on all of Xτ provided

0 < τ <
1

C
, (12)

where the constant C > 0 is from (11). Consequently, given any τ1 > 0 such that (12) holds
for τ = τ1, the Contraction Mapping Theorem implies there exists a unique u ∈ Xτ1 such
that

A(u) = u

9



so that u is a weak solution of the IVBVP (6) on the time interval [0, τ1].
In this example, it turns out we can extend the solution beyond the time τ = τ1. Indeed,

notice that since u(t) ∈ H1
0 (Ω) for a.e. t ∈ [0, τ1], we can assume WLOG (redefining τ1 if

necessary) that u(τ1) ∈ H1
0 (Ω), and hence we can use the “final data” u(τ1) as an initial

condition from which to evolve from. In particular, since the constant C in (11) depends
only on the geometry of Ω and Lip(f), we can repeat the above argument with initial data
g = u(τ1) to extend our weak solution to the time interval [0, 2τ1]. Continuing, after finitely
many steps we obtain a weak solution of (6) on the entire time interval [0, T ].

Finally, to verify uniqueness over the interval [0, T ], suppose u1 and u2 are two weak
solutions of (6) and note, using previous notation,

wj = A(uj) = uj

so that (10) implies

‖u1 − u2‖2L2(Ω)(t) ≤ C
∫ t

0
‖u1 − u2‖2L2(Ω)(s)ds

for all t ∈ [0, T ]. Using Gronwall’s inequality, it follows that ‖u1 − u2‖L2(Ω)(t) = 0 for all
t ∈ [0, T ] as desired.

In the above example, we avoided a smallness assumption on our weak solutions or on
Lip(f) by iteration. This was possible because the constant C in (11) did not depend on the
initial condition nor on τ itself. We will see this type of trick again later when considering
well-posedness of the nonlinear Schrödinger equation.

5 The Chaffee-Infante Problem & Finite Time Blowup

It is important to note that the assumption in Section 4 that f be globally Lipschitz is unre-
alistic. In applications it often happens that the nonlinearity f is a polynomial in u, giving
rise to nonlinearities which are locally, but certainly not globally, Lipschitz continuous. In
these situations solutions may not exist globally in time, as this next example illustrates.

Consider the one-dimensional IVBVP
ut = uxx + u3, x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = g(x), x ∈ (0, 1)

(13)

Note that (13) combines two interesting and competing effects. First, if one ignores the
nonlinearity then we have the classical diffusion equation, which we know is smoothing and
solutions exist for all time. On the other hand, if we ignore the diffusion term then the
PDE reduces to the ODE

ut = u3
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which has solutions

u(t) =
u(0)√

1− 2u(0)2t
,

which become singular (i.e. blow up) in finite time. To analyze (13), one must untable
these these competing effects.

Here, we aim at proving that if the initial data is “sufficiently large”, in a sense to be
determined later, then there do not exist smooth solutions of (13) defined for all t > 0,
i.e. smooth solutions will not be “global”. We begin by recalling the eigenvalue-eigenvector
pairs of uniformly elliptic operator −∂2

x on H1
0 (0, 1) are given explicitly by

µj = (jπ)2, φj(x) = sin(jπx), j ∈ N.

In particular, the principle (i.e. lowest) eigenvalue is µ1 = π2 with eigenfunction φ1(x) =
sin(πx) satisfying

φ1(x) > 0 on (0, 1) and

∫ 1

0
φ1(x)2dx =

1

2
.

Now, assume that u(x, t) is a smooth solution of (13) and, for so long the solution u is
smooth, let

η(t) :=

∫ 1

0
u(x, t) sin(πx)dx

denote the first Fourier sine coefficient of u. Our goal is to prove that if η(0) is sufficiently
large, then η(t) blows up in finite time.

To this end, note from (13) that

η′(t) =

∫ 1

0
ut sin(πx)dx =

∫ 1

0

(
uxx + u3

)
sin(πx)dx

= −π2η(t) +

∫ 1

0
u3 sin(πx)dx.

where the last equality follows from integration by parts. Now, suppose that g(x) ≥ 0 for
all x ∈ (0, 1) and note that the maximum principle then implies u(x, t) ≥ 0 for all 0 < x < 1
and for all t > 0 for which the solution is defined. Using Hölder’s inequality it follows that∫ 1

0
u(x, t) sin(πx)dx =

∫ 1

0

(
u3 sin(πx)

)1/3
(sin(πx))2/3 dx

≤
(∫ 1

0
u3 sin(πx)dx

)1/3(∫ 1

0
sin(πx)dx

)2/3

=

(
2

π

)2/3(∫ 1

0
u3 sin(πx)dx

)1/3

so that ∫ 1

0
u3 sin(πx)dx ≥ π2

4
η(t)3.
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It follows that for all t > 0 for which u exists and is smooth we have

η′(t) ≥ π2

(
1

4
η(t)3 − η(t)

)
= π2η(t)

(
1

4
η(t)2 − 1

)
.

Consequently, if7 η(0) > 2 then Gronwall’s inequality implies that η(t) ≥ y(t) where y(t)
solves the ODE

dy

dt
= π2

(
1

4
y(t)3 − y(t)

)
which has explicit solution8 given by

y(t) =
2y(0)√

y(0)2 − (y(0)2 − 4)e2π2t
.

Clearly if y(0) > 2 then y(t)→∞ as t→ t−∗ , where, explicitly, we have

t∗ :=
1

π2
log

(
η(0)√
η(0)2 − 4

)
.

It immediately follows that no smooth solution of (13) can exist beyond t = t∗.

Note that the above argument does not actually prove that η(t) blows up at t = t∗,
since it may happen that the solution u loses smoothness at time t∗, since it may happen
that u loses smoothness at an earlier time (for example, another Fourier coefficient may
blow up before t = t∗), which would invalidate the above argument. One can only get a
sharp result if the quantity blowing up is a “controlling norm”, in the sense that all local
solutions remain smooth if and only if the controlling norm is finite.

The above proof shows that if the initial data g is “sufficiently large” then there exists
a finite τ > 0 such that

lim
t→τ−

‖u(t)‖H1(0,1) =∞.

A natural question is to ask what happens if g is not large, but is instead “small” in some
sense. It turns out that using techniques from Dynamical Systems one can show that if
‖g‖H1(0,1) is sufficiently small, then the unique solution of (13) exists for all time t ≥ 0 and,
in particular, one has

lim
t→∞
‖u(t)‖H1(0,1) = 0

at an exponential rate. In the language of Dynamical Systems, this says that the equilibrium
solution u ≡ 0 is an exponentially, asymptotically stable solution to the nonlinear reaction

7Note the fixed points of the above ODE are η = 0,±2, and hence the flow generated by the above ODE
is monotone increasing for η > 2.

8This can be easily found by substituting ξ(t) = eπ
2ty(t) and noting that ξ satisfies the separable ODE

ξ′(t) = π2

4
e−2π2tξ(t)3.
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diffusion equation (13). For details, take Math 851 with me sometime (for example, in
Spring 2021).

Furthermore, observe in the above example that the sign of the nonlinearity was crucial.
Indeed, it is possible to show (via Galerkin’s method) that there exists a unique weak
solution (appropriately defined) of the IVBVP

ut = uxx − u3, x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0, t > 0

u(x, 0) = g(x), x ∈ (0, 1)

(14)

regardless of the “size” of the initial condition g. This is not unexpected, since solutions of
the ODE

ut = −u3

exist globally in time (i.e. they have no finite time blow up). Interested students could
consider this as a topic for a final project.

Finally, I want to emphasize that similar non-existence results are possible for other
polynomial nonlinearities. For example, see Section 9.4.1 in Evans for an example with
quadratic nonlineraity posed in Rn.

6 Some Final Thoughts

In the above, we explored some applications of one of the most basic fixed point arguments:
the Contraction Mapping Theorem. Clearly there are several other fixed point methods
exist. The next result is an example of a fixed point result in finite-dimensions which is
purely topological in nature.

Theorem 3 (Brouwer’s Fixed Point Theorem). If B ⊂ Rn is a closed ball and if f : B → B
is continuous, then f has a fixed point in B.

The above result follows directly by the Intermediate Value Theorem when n = 1, but
is surprisingly difficult to prove9 for n ≥ 2. The key points used in the proof are the
convexity and the compactness of the closed unit ball in Rn. With that said, it is natural
to ask if a generalization to infinite dimensional Banach spaces may be possible. This
question has been addressed by numerous researchers, and two well-known extensions to
the infinite-dimensional context are given as follows.

Theorem 4 (Schauder’s Fixed Point Theorem). Let X be a real Banach space and suppose
K ⊂ X is compact and convex. Also, suppose that A : K → K is continuous. Then A has
a fixed point in K.

9Interestingly, one proof for the higher-dimensional case of Brouwer’s Fixed Point Theorem can be done
using the Calculus of Variations, which is the next topic for the class!
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Theorem 5 (Schaefer’s Fixed Point Theorem). Let X be a real Banach space and suppose
that A : X → X is a continuous. Assume also that A : X → X is compact, i.e. for
each bounded sequence {uk} ⊂ X there exists a subsequnece {ukj} such that the sequence
{A(ukj )} converges in X. Furthermore, assume that the set

{u ∈ X : u = λA(u) for some 0 ≤ λ ≤ 1}

is bounded. Then A has a fixed point in X.

Note that in Schaefer’s Fixed Point Theorem, the final hypotheses essentially just guar-
antees that the set of all possible fixed points of the family of operators λA with λ ∈ [0, 1],
then the mapping A itself has a fixed point. As described in Evans, this is an example of the
informal principle that “if we can prove appropriate estimates for solutions of a nonlinear
PDE, under the assumption that such solutions exist, then in fact these solutions do exist”.
This is an example of the method of a-priori estimates, which is used throughout the study
of nonlinear PDE.

As you might expect, applications of these fixed point theorems would be an interesting
topic for final projects in the class!

7 Exercises

Complete the following exercises.

1. Let Ω ⊂ Rn be open and bounded and let f : Ω × R → R be a continuous function
which satisfies the Lipshitz condition

|f(x, z1)− f(x, z2)| ≤ L1|z1 − z2|

for all (x, z1), (x, z2) ∈ Ω × R. Assume also that f(·, 0) ∈ L2(Ω) and consider the
nonlinear elliptic BVP {

−∆u = f(x, u), in Ω

u = 0, on ∂Ω.

Prove there exists a unique weak solution u ∈ H1
0 (Ω) of the above BVP provided that

L1 < λ1,

where λ1 is the principle eigenvalue of −∆ with respect to H1
0 (Ω). Here, we say

u ∈ H1
0 (Ω) is a weak solution of the given BVP if∫

U
Du ·Dv dx =

∫
U
f(x, u)v dx

for all v ∈ H1
0 (Ω).

14



Hint: For this problem, let X = H1
0 (Ω) and note by the Poincaré inequality that X is

a Banach space with the norm

‖u‖X := ‖Du‖L2(Ω).

First, show that for each u ∈ X the linear elliptic{
−∆w = f(x, u), in Ω

w = 0, on ∂Ω.
(15)

has a unique weak solution w ∈ X. This naturally defines a map

A : X → X, A(u) = w

where w is the unique weak solution of (15). Now, prove that A is a strict contraction
on X. For this, the variational characterization of λ1 (see Theorem 2 in the “Principle
Eigenvalue Theorem” notes) will be very helpful.

2. (Based on #4, Section 9.7 from Evans) Let U ⊂ Rn be open and bounded with smooth
boundary and consider a parabolic IVBVP of the form

ut −∆u = f in U × (0,∞)

u = 0 on ∂U × [0,∞)

u = g on U × {t = 0},

where g ∈ L2(U) and f ∈ L∞(U × [0,∞)).

(a) Suppose f = 0 above. Using the eigenfunction expansion of the solution derived
in class, show directly that if u is the weak solution of the above IVBVP then

‖u(·, t)‖L2(U) ≤ e−λ1t‖g‖L2(U) ∀ t ≥ 0,

where λ1 > 0 is the principle eigenvalue of −∆ with Dirichlet boundary condi-
tions on U .

(b) Now, suppose there exists a τ > 0 such that f is τ -periodic in t, i.e. f(x, t+τ) =
f(x, t) for all (x, t) ∈ U × (0,∞). Prove there exists a unique function g ∈ L2(U)
for which the corresponding weak solution u is τ -periodic in t as well.

Hint: Let f ∈ L∞(U × [0,∞)) be fixed as in the statement of the problem.
Parabolic existence theory guarantees that for each g ∈ L2(U) there exists a
unique weak solution u ∈ C((0,∞);L2(U)) ∩ L2((0,∞);H1

0 (U)) of the given
parabolic IVBVP; see Section 11.2(b) of McOwen for details. Use this result
together with the Banach Fixed Point Theorem on an appropriate map between
Banach spaces. Also, you may find the exponential bound derived in #4 above
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helpful in verifying the contraction property.

Extended Hint: Continuing to have f fixed, the above “weak solution operator”
produces a map from the initial data g ∈ L2(U) to the weak solution u = S[g] ∈
C((0,∞);L2(U))∩L2((0,∞);H1

0 (U)). In order for given initial data g to produce
a solution u that is τ -periodic in time, it must be that u(t) = u(t + τ) for a.e.
t ≥ 0, i.e. we must have that S[g](t) − S[g](t + τ) = 0 for a.e. t ≥ 0. Set
w(t) := S[g](t)−S[g](t+ τ) and prove there exists a unique g ∈ L2(U) such that
w(t) = 0 for a.e. t ≥ 0.

3. This exercise introduces you to “Duhamel’s Principle” for nonhomogeneous linear
PDE, and demonstrates how it can be used in the nonlinear PDE context.

(a) Let Ω ⊂ Rn be open and bounded with smooth boundary, and for f ∈ L2(Ω)
and g ∈ H1

0 (Ω) consider the IVBVP
ut = ∆u+ f, x ∈ Ω, t > 0

u(x, 0) = g, x ∈ Ω

u(x, t) = 0, x ∈ ∂Ω, t > 0.

(16)

Recall from Section 2 in Chapter 3 (of our notes10) that when f = 0 and g ∈
H1

0 (Ω) the above problem has a unique weak solution

u ∈ C([0,∞);H1
0 (Ω)) ∩ C1((0,∞);L2(Ω))

which is given explicitly by

u(x, t) =
∞∑
k=1

ake
−µktφk(x)

where the {(µk, φk)} are the Dirichlet eigenvalues and eigenfunctions associated
to −∆ on H1

0 (Ω), with eigenfunctions normalized to be an ONB for L2(Ω). Use
this explicit form to prove that weak solutions of the above IVBVP with f = 0
satisfy the parabolic smoothing estimate

‖u(·, t)‖H1(Ω) ≤
C

t1/2
‖g‖L2(Ω) (17)

for all t > 0, where here C > 0 is some constant.

(b) For each t ≥ 0, define the weak solution operator

S(t) : H1
0 (Ω)→ C([0,∞);H1

0 (Ω)) ∩ C1((0,∞);L2(Ω))

10This is not exactly the result we proved, but this is proved in the same way... here, just take this
reformulation for granted.
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by u(x, t) = S(t)g(x). It can be shown for each f ∈ L2(Ω) the unique weak
solution associated to the nonhomogeneous IVBVP (16) is given by

u(x, t) = S(t)g(x) +

∫ t

0
S(t− s)f(x)ds.

Taking uniqueness for granted, formally show by differentiating the above in t
that this solves (16). This is called Duhamel’s Principle, and essentially says
you can solve non-homogeneous problems whenever you can solve homogeneous
problems.

(c) Now, lets see how the above can be used to solve nonlinear PDE. Let f ∈ C1(R),
and for each g ∈ H1

0 (Ω) consider the one-dimensional IVBVP
ut + uux = uxx + f(u), x ∈ (0, 1), t > 0

u(x, 0) = g(x), x ∈ (0, 1)

u(0, t) = u(1, t) = 0, t > 0.

Prove that for τ > 0 sufficiently small, there exits a unique weak solution

u ∈ C([0, τ ];H1
0 (Ω)) ∩ C1((0, τ);L2(Ω))

to the above IVBVP.

Hint: By part (b) above, we see that if a weak solution exists then it satisfies

u(x, t) = S(t)g(x) +

∫ t

0
S(t− s)F (u(x, s))ds

where here F (u) = f(u) − uux, i.e. u would have to be a fixed point of the
mapping

T (u) = S(t)g +

∫ t

0
S(t− s)F (u(s))ds

on the space
C([0, τ ];H1

0 (Ω)) ∩ C1((0, τ);L2(Ω)).

Show that T is a strict contraction on this space, provided that τ > 0 is suffi-
ciently small. The estimate (17) will be crucial here.

4. (Based on #2, Section 13.3 from McOwen11) Let U ⊂ Rn be open and bounded with
smooth domain, and consider the following nonlinear Dirichlet problem{

∆u+ f(u) = 0, in U

u = 0 on ∂U,
(18)

where f : R→ R is a continuous function.

11Note: This exercise will be important in future discussions...
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(a) If F (u) =
∫ u

0 f(t)dt, use integration by parts to show that

n

∫
U
F (u)dx+

∫
U
f(u)

n∑
i=1

xi
∂u

∂xi
dx = 0

for any u ∈ C1(Ū) with u = 0 on ∂U .

(b) If u ∈ C2(U) ∩ C(Ū) satisfies (18), then prove Pohozaev’s identity

n− 2

2

∫
U
|Du|2dx− n

∫
U
F (u)dx+

1

2

∫
∂U

(
∂u

∂ν

)2

(x · ν)dS = 0,

where ν is the exterior unit normal vector to ∂U .

(c) When U is a ball in Rn, show that (18) admits no non-trivial solution u ∈
C2(U) ∩ C(Ū) when f(u) = |u|p−1u with p > n+2

n−2 .
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