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1 Introduction

In this chapter, we consider a set of techniques referred to as “semigroup methods” to study
the existence of solutions of both linear and nonlinear evolution equations. The basic idea
is to essentially view an evolution equation as an infinite dimensional dynamical system
and to try to use the basic ideas and techniques from ODE theory (i.e. finite dimensional
dynamical systems) in the PDE setting. The advantages of this viewpoint can not be
understated, and it is evidence by the fact that this methodology us used throughout both
pure and applied analysis of PDE including the development of well-posedness theories, the
existence of solutions, the analysis of nonlinear smoothing effects, and in understanding
the local stability and global dynamics of nonlinear PDE. Given its wide applicability, we
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clearly can’t cover all those topics here. For these notes, we will primarily concern ourselves
with the development of existence and well-posedness theories.

To this end, we first motivate some of the basic ideas by first reviewing the easiest case
possible, which is when what we know from finite dimensional dynamical systems actually
works without modification.

1.1 Motivation: Uniformly Continuous Groups of Opertaors

To begin, suppose X is a Banach space and recall the set

L(X) = {A : X → X : A is linear and bounded}

is a Banach space when equipped with the operator norm

‖A‖L(X) = sup
u∈X\{0}

‖Au‖X
‖u‖X

= sup
‖u‖X=1

‖Au‖X .

Now, fix A ∈ L(X) and note that for each t ∈ R we can define the operator eAt : X → X
by

eAt =
∞∑
j=0

Ajtj

j!
. (1)

Note that, since ‖A‖L(X) < ∞, the above series clearly converges uniformly (i.e. in the
operator norm) on compact intervals of t ∈ R. Indeed, note for any k < m we have∥∥∥∥∥∥

k∑
j=1

Ajtj

j!
−

m∑
j=1

Ajtj

j!

∥∥∥∥∥∥
L(X)

≤
m∑

j=k+1

‖A‖jL(X)t
j

j!

with the latter sum being uniformly small on compact intervals of t ∈ R for all k,m suffi-
ciently large. Extending this calculation, the following facts can be easily established.

Lemma 1. Given A ∈ L(X), the following are true.

(a) The map
R 3 t 7→ eAt ∈ L(X)

is C∞.

(b) For all t, s ∈ R we have
eAseAt = eA(s+t) = eAteAs.

(c) d
dte

At = AeAt = eAtA.

The proof of this lemma is left as an exercise. A consequence is the following fundamental
existence and uniqueness result from elementary ODE theory.
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Theorem 1. Let A ∈ L(X) and consider the homogeneous IVP{
ut = Au, t ∈ R

u(0) = f ∈ X.

Then the unique solution u ∈ C∞(R;X) is

u(t) = eAtf.

We now illustrate this result with some basic examples.

Example: If A ∈ L(Rn;Rn) is an n×n matrix, then the unique solution of the linear IVP{
ut = Au, t ∈ R
u(0) = u0 ∈ Rn

is given by the matrix exponential u(t) = eAtu0. This is just basic linear ODE theory! Of
particular note, observe that for each fixed u0 ∈ Rn we have

∣∣eAtu0 − u0

∣∣ =

∣∣∣∣∣∣
∞∑
j=1

tj

j!
Aju0

∣∣∣∣∣∣ ≤
 ∞∑
j=1

|t|j

j!
‖A‖jL(Rn)

 |u0| =
(
et‖A‖L(Rn) − 1

)
|u0|

so that, in particular, ∥∥eAt − I∥∥L(Rn)
≤ et‖A‖L(Rn) − 1.

It follows in this case that the operator eAt converges uniformly on Rn (i.e. in the operator
norm) to the identity operator as t→ 0. Note that since

eA(t+h) − eAt = eAt
(
eAh − I

)
,

it actually follows from above that for any fixed t ∈ R we have eA(t+h) → eAt uniformly in
L(Rn) as h→ 0.

Example: For a fixed p ∈ [1,∞] define A : Lp(R)→ Lp(R) be the translation operator

Af(x) = f(x+ 1), x ∈ R.

Since we clearly have A ∈ L(Lp(R)), it follows that the unique solution u ∈ C∞(R;Lp(R))
of the differential-difference equation{

ut(x, t) = u(x+ 1, t), x, t ∈ R
u(·, 0) = f ∈ Lp(R)
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is given by u(x, t) = eAtf(x). More explicitly, the unique solution is given by

u(x, t) =

∞∑
j=0

tn

n!
Anf(x) =

∞∑
j=0

tn

n!
f(x+ n).

In particular, note that for each fixed f ∈ Lp(Rn) we have∥∥eAtf − f∥∥
Lp(Rn)

≤
(
e|t| − 1

)
‖f‖Lp(Rn)

and hence that ∥∥eAt − I∥∥L(Lp(Rn))
≤ e|t| − 1.

It follows that, as with the previous example, the operator eAt converges uniformly on
Lp(Rn), i.e. in L(Lp(Rn)), to the identity operator as t→ 0.

Example: Given a ∈ L1(Rn), define the convolution operator A : L2(Rn)→ L2(Rn) by

Af(x) = a ∗ f(x) =

∫
Rn
a(x− y)f(y)dy

and consider the integral equation IVP{
ut = Au, t ∈ R

u(0) = f ∈ L2(Rn)
(2)

Now, A ∈ L(L2(Rn)) by Young’s convolution inequality2, which states that

‖g ∗ h‖Lr(Rn) ≤ ‖g‖Lp(Rn)‖g‖Lq(Rn)

where the r, p, q ≥ 1 satisfy
1

p
+

1

q
= 1 +

1

r
.

Applying this inequality with p = 1 and q = r = 2 we get

‖Af‖L2(Rn) ≤ ‖a‖L1(Rn)‖f‖L2(Rn),

as desired. By the above theorem, it follows that for each f ∈ L2(Rn) the unique solution
to (2) is given by

u(x, t) = eAtf(x).

Note that using the Fourier transform we find an alternative representation for the solution
of (2) as

u(x, t) =

∫
Rn
g(x− y, t)f(x)dx

2An elementary, yet complicated, proof can be given with Hölder’s inequality. Alternatively, this maybe
be established as a consequence of Riesz-Thorin interpolation.
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where here g ∈ L1(Rn) is such that

ĝ(ξ, t) = e(2π)nâ(ξ)t.

By uniqueness, it follows that

eAtf(x) =

∫
Rn
g(x− y, t)f(x)dx.

which, Young’s convolution inequality, clearly shows that eAt : L2(Rn) → L2(Rn). In
particular, observe by Plancerel’s theorem3 that for each fixed f ∈ L2(Rn) we have∥∥eAtf − f∥∥

L2(Rn)
≤
∥∥∥e(2π)nâ(ξ)t − 1

∥∥∥
L∞ξ (Rn)

‖f‖L2(Rn)

which, since a ∈ L1(Rn) implies â ∈ C(Rn) with â(ξ) → 0 as ξ → ∞, again implies that
eAt → I in L(L2(Rn)) as t→ 0.

In each of the examples above, the solution operators T (t) = eAt can be shown to satisfy
the following properties:

(1) T (0) = I.

(2) T (s)T (t) = T (s+ t) for all s, t ∈ R.

(3) T (h)→ I uniformly in L(X) as h→ 0.

Such a one-parameter family of operators {T (t)}t∈R defines a uniformly continuous group
of operators. While such a family of operators is certainly nice to have4, it turns out that
they practically never occur in the study of PDE due to the following result.

Lemma 2. Given a Banach space X, a family {T (t)}t∈R is a uniformly continuous group
of operators on X if and only if

Tt(0) ∈ L(X).

In each of the above examples, Tt(0) = A, which was always a bounded linear operator
on the associated Banach space X. In PDE applications, however, we are working with
differential operators which, as we have sen before, are not continuous from natural Sobolev
spaces into themselves. It follows that if we want the the above methodologies to be appli-
cable to the study of PDE, we need to find a suitable replacement for our definition of eAt

when A /∈ L(X). This is precisely the basic goal of semigroup theory. In order to motivate
what such an extension might look like in the PDE setting, lets consider an example.

3This says that, up to a scaling factor, the Fourier transform is an isometry from L2(Rn) into itself.
4In fact, its all you ever see in finite dimensional dynamical systems!
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1.2 Semigroups: A Motivating Example

Let Ω ⊂ Rn be open and bounded, and consider the following IVBVP for the heat equation:
ut = ∆u, x ∈ Ω, t > 0

u = 0 on ∂Ω

u(0) = g

(3)

where here g ∈ H2(Ω) ∩H1
0 (Ω). In our previous work, we saw that the unique solution of

(3) is given by

u(x, t) =
∞∑
k=1

ake
−λktφk(x).

where the (λk, φk) are the eigenvalue/eigenfunction pairs for −∆ on H1
0 (Ω), with the φk

chosen to be orthonormal in L2(Ω), and an := 〈φn, g〉L2(Rn). The above naturally defines a
one-parameter family of operators

T (t) : L2(Rn)→ L2(Rn), T (t)g(x) =
∞∑
k=1

ake
−λktφk(x) (4)

defined for all t ≥ 0 such that for each g ∈ H2(Ω) ∩H1
0 (Ω) the solution to (3) is given by

u(t) = T (t)g. Note that in addition to only being defined for t ≥ 0, and hence having no
possibility of forming an actual group of operators, we have

Tt(0)g(x) = −
∞∑
k=1

ake
−λktλkφk(x) = −∆g(x)

for all5 g ∈ H2(Ω) ∩ H1
0 (Ω) so that Tt(0) /∈ L(L2(Rn)). In particular, note the domain

of Tt(0) is not even all of L2(Ω). Nevertheless, lets study what structure, if any, from the
previous section we still retain in this setting.

First, note that, by construction, we clearly have T (0)g = g for all g ∈ L2(Ω). Moreover,
for a fixed g ∈ L2(Ω) and s, t ≥ 0 we have

T (t)T (s)g(x) = T (t)

( ∞∑
k=1

ake
−λksφk(x)

)

=
∞∑
j=1

〈 ∞∑
k=1

ake
−λksφk(·), φj(·)

〉
L2(Ω)︸ ︷︷ ︸

ake
−λksδj,k

e−λjtφj(x)

=
∞∑
k=1

ake
−λk(t+s)φk(x)

= T (t+ s)g(x)

5Specifically, not e that Tt(0) is note even defined on all of L2(Rn). As we will see, this is a reflection of
the fact that Tt(0) is an unbounded operator on L2(Rn).
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so that T (s)T (t) = T (s + t) for all s, t ≥ 0. In particular, it follows that the family of
operators {T (t)}t≥0 forms a semigroup of operators6.

Finally, we characterize the continuity of T . Note that for all g ∈ L2(Ω) and h > 0 we
have

‖T (h)g − g‖2L2(Ω) =

∥∥∥∥∥
∞∑
k=1

〈g, φk〉L2(Ω)

(
e−λkt − 1

)
φk

∥∥∥∥∥
2

L2(Ω)

=
∞∑
k=1

|〈g, φk〉|2
(
e−λkh − 1

)2
,

where the last equality follows by the orthonormality of the eigenfunctions {φk}. In partic-
ular, it follows that for each g ∈ L2(Ω) we certainly have the strong convergence

T (h)g → g in L2(Ω) as h→ 0+.

However, we note that this convergence is not uniform in L(L2(Ω)) since we can’t bound
the sequence (

e−λkh − 1
)2

above uniformly in k by something that decays to zero as h→ 0+.
So, in this linear diffusion example, it appears that the family {T (t)}t≥0 forms a semi-

group of operators which is strongly continuous, but not uniformly continuous. It turns out
that such families of operators are common in the study of PDE, and in the next section
we begin our analysis of such families.

2 Semigroups of Operators

2.1 Basic Definitions & Properties

Motivated by the examples in the previous section, we make the following definition.

Definition 1. Let X be a Banach space. A one-parameter strongly continuous (i.e. C0)
semigroup on X is a family of operators

{T (t)}t≥0 ⊂ L(X)

such that the following hold:

(i) T (0) = I.

6Recall that a semigroup is an algebraic structure consisting of a set and an associative binary operation.
In particular, in the strictly algebraic sense, semigroups need not have multiplicative inverses, nor are they
required to have identity elements. So, technically speaking, the family {T (t)}t≥0 forms a semigroup with
identity, but we will never make this distinction.
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(ii) T (t)T (s) = T (t+ s) for all s, t ≥ 0.

(iii) For all f ∈ X, T (h)f → f strongly in X as h→ 0+.

Further, such a C0 semigroup is said to be ω-contractive for some ω ∈ R if, additionally,

‖T (t)‖L(X) ≤ eωt

for all t ≥ 0.

Note that condition (iii) above is equivalent to requiring that for each f ∈ X the mapping

[0,∞) 3 t 7→ T (t)f ∈ X

is continuous. Indeed, fixing f ∈ X, the continuity of T (·)f at t = 0 implies that δ > 0
sufficiently small there exists a constant Mδ,f > 0 such that

‖T (t)f‖X ≤Mδ,f for all t ∈ [0, δ].

By the Uniform Boundedness Principle7, it follows that the operator norm ‖T (t)‖ is bounded
for t ∈ [0, δ] and hence, by the semigroup property (ii) above, it follows that ‖T (t)‖ is
bounded on any finite time time interval. For a given f ∈ X and t > 0 fixed, the continuity
of T (t)f from the right follows directly from the semigroup property and (iii), while the
continuity from the left follows from the identity

T (t− h)f − T (t)f = T (t− h) (I − T (h)) f, h > 0.

Another important observation is that every C0-semigroup is ω-contractive for some
ω ∈ R. For instance, in the heat equation example considered in Section 1.2 we have that

‖T (t)g‖L2(Ω) ≤ e−λ1t‖g‖L2(Ω)

for all g ∈ L2(Ω) so that, in that case, the C0 semigroup {T (t)}t≥0 constructed there is
actually −λ1-contractive.

Next, we see that every C0-semigroup is essentially of the form “eAt” for some operator
A.

Definition 2. Let {T (t)}t≥0 be a C0-semigroup on a Banach space X. Define an operator
A as

Au := lim
t→0+

T (t)u− u
t

=
d

dt
T (t)u

∣∣∣
t=0

,

with domain
D(A) = {u ∈ X : above limit exists in X} .

The operator A is called the (infinitesimal) generator of the semigroup.

7Take Math 960.
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Note that if A is the generator for a semigroup {T (t)}t≥0 then we always have (at least)
0 ∈ D(A). Furthermore, it follows from the definition that generators are always linear
operators on D(A). Note in the heat equation example in Section 1.2 we had

Tt(0) = −∆ =: A

which is well-defined on the domain D(A) = H2(Ω) ∩ H1
0 (Ω). In particular, in this case

the domain D(A) was dense in L2(Ω). As we will see later, this is a general feature of the
generators for C0-semigroups.

The usefulness of the above concepts is made clear by the following result.

Theorem 2. Suppose A is the generator of a C0-semigroup {T (t)}t>0 on a Banach space
X. Then for all u ∈ D(A), we have the following:

(i) T (t)u ∈ D(A) for all t ≥ 0, i.e. D(A) is an invariant set for the semigroup.

(ii) AT (t)u = T (t)Au for each t > 0, i.e. generators and semigroups commute.

(iii) The mapping t 7→ T (t)u ∈ X is C1(0,∞;X).

(iv) We have d
dtT (t)u = AT (t)u for all t > 0.

Proof. To prove (i) and (ii), let u ∈ D(A) be fixed and note that by the semigroup property
we have

T (s)T (t)u− T (t)u

s
= T (t)

(
T (s)u− u

s

)
valid for all t ≥ 0 and s > 0. Fixing t ≥ 0 and noting that

lim
s→0+

T (t)

(
T (s)u− u

s

)
= T (t)

(
lim
s→0+

T (s)u− u
s

)
= T (t)Au,

it follows that

lim
s→0+

T (s)T (t)u− T (t)u

s
= T (t)Au.

In particular, we have that T (t)u ∈ D(A) with AT (t)u = T (t)Au, as claimed.
Next, note that if t > 0 is fixed then for all h > 0 we have by the semigroup property

that

T (t+ h)u− T (t)u

h
= T (t)

(
T (h)u− u

h

)
so that

lim
h→0+

T (t+ h)u− T (t)u

h
= T (t)Au.

For the left hand limit, note that for t > 0 fixed and h > 0 sufficiently small we have by the
semigroup property that

T (t) = T (t− h)T (h)

9



and hence

T (t)u− T (t− h)u

h
= T (t− h)

(
T (h)u− u

h

)
= T (t− h)

(
T (h)u− u

h
−Au

)
+ T (t− h)Au.

Since ‖T (t − h)‖ ≤ 1 for all 0 < h < t and since T (h)u−u
h → Au in X as h → 0+ it follows

that

lim
h→0+

T (t)u− T (t− h)u

h
= T (t)Au.

Therefore, the mapping t 7→ T (t)u is differentiable for each t > 0 with d
dtT (t)u = T (t)Au =

AT (t)u. Finally, note that since the map t 7→ T (t)Au is continuous, we have that the
mapping t 7→ T (t)u is C1 on t > 0, as claimed.

The main utility of the above technical result is the following. Let X be a Banach space
and consider the following abstract IVP

du

dt
= Au, 0 < t <∞

u(0) = g,
(5)

where here A is a linear operator on X. By Theorem 2, it follows that if A is the generator
for a C0-semigroup {T (t)}t≥0 on X, and if g ∈ D(A), then the function

u(t) = T (t)g

is a classical solution of (5), in the sense that

u ∈ C([0,∞);D(A)) ∩ C1((0,∞);X)

and u(t) ∈ D(A) for all t > 0 with u(0) = g and u satisfies (5) pointwise for all t > 0.
Consequently, we can use semigroup theory to solve linear IVP of the form (5), provided
that the operator A is the generator for some C0-semigroup on the Banach space X.

Example: Returning to our linear heat example in Section 1.2, consider the linear IVBVP
ut = ∆u, x ∈ Ω, t > 0

u = 0 on ∂Ω

u(0) = g

(6)

Recall that in Section 1.2 we proved that the family of operators {T (t)}t≥0 defined in (4)
formed a semigroup on L2(Ω) with generator

A = −∆, D(A) = H2(Ω) ∩H1
0 (Ω).

10



According to Theorem 2, it follows for each g ∈ D(A) the function u(t) = T (t)g is a classical
(in the above sense) solution of the linear IVBVP (6).

Of course, in the above example one would be correct in saying that we “cheated”, in
the sense that we only proved that −∆ generated a C0-semigroup on L2(Rn) by actually
analyzing the semigroup directly. If we already had a way to study the semigroup directly,
there would be little need for abstract results like Theorem 2! Consequently, to make the
above methodology useful in applications, we need to come up with a way of determining
if a given linear operator A is the generator for some C0-semigroup on X that does not
rely on having an explicit form of the semigroup itself. This is addressed in the following
section.

2.2 Classification of Generators

In this section, our goal is to find necessary and sufficient conditions for a given linear
operator A on a Banach space X to be the generator for some C0-semigroup on X. As seen
in Section 1.1, it is clear that a sufficient condition is for A ∈ L(X), in which case A is
actually the generator of a uniformly continuous group of operators. In PDE applications
however, we are typically considering linear evolution equations on X of the form

du

dt
= Au, 0 < t <∞

where A is an unbounded operator on X. While such operators are clearly not continuous
on X (by definition), it turns out that they often belong to a special class of “closed”
operators.

Definition 3. Let X and Y be Banach spaces, and let A : D(A) ⊂ X → Y be a linear
operator with domain D(A). Then A is said to be closed if for every sequence {xn} in D(A)
such that xn → x in X and Axn → y in Y , we have x ∈ D(A) and Ax = y.

Said more abstractly, an operator A is said to be closed if its graph

gra(A) = {x⊕Ax : x ∈ D(A)}

is a closed subset of X ⊕ Y . Notice, in particular, that all bounded operators are closed.
Indeed, if A ∈ L(X,Y ) and if xn → x in X then clearly Axn → Ax in Y However, in the
definition of being a closed operator we only require that the property

lim
n→∞

Axn = Ax

holds for sequences {xn} in D(A) that converge to x ∈ X that have the additional property
that the image sequence {Axn} converges in Y . As the next example shows, the property
of being closed requires an appropriate selection of the domain of the operator.
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Example: Let Ω ⊂ Rn be an open and bounded domain and consider the operator A := −∆
as a linear map from L2(Ω) to L2(Ω) with domain D(A) = C∞c (Ω). Then A is not closed.
Indeed, fix f ∈ H2(Ω) ∩H1

0 (Ω) and recall there exists a sequence {fk} ⊂ C∞c (Ω) such that
fk → f in H2(Ω) ⊂ L2(Ω). Then in this case we know that {Afk} converges in L2(Ω), but
f /∈ D(A). It follows that the operator

−∆ : C∞c (Ω) ⊂ L2(Ω)→ L2(Ω)

is not closed, as claimed.
Nevertheless, we can obtain a closed operator by extending A in the following way. Let

D(Ã) be the set of all functions f ∈ L2(Ω) such that there exists a sequence fn ∈ D(A)
and an element g ∈ L2(R) such that fn → f in L2(Ω) and A(fn) → g in L2(Ω). Thus, we
can define an operator

Ã : D(Ã) ⊂ L2(Ω)→ L2(Ω)

by requiring that Ã(f) = g. The operator Ã is clearly closed an is an extension of the
operator A, in the sense that D(A) ⊂ D(Ã) and Ã(f) = A(f) for all f ∈ D(A). Notice that
the domain of the extension can be recognized as

D(Ã) = H2(Ω) ∩H1
0 (Ω).

Following the above example, it seems that a natural way to try to obtain a closed
extension of a given linear operator A : D(A) ⊂ X → Y is to simply take the closure of its
graph in X ⊕Y . The problem is that the set graX⊕Y may not be the graph of an operator,
and hence it is not true that every linear operator has a closed extension. We can, however,
characterize those operators which admit closed extensions.

Lemma 3. A linear operator A : D(A) ⊂ X → Y has a closed extension, i.e. is closable,
if for every seqeunce {xn} in D(A) with xn → 0 in X, we either have Axn → 0 in Y or
else limn→∞Axn does not exist.

Example: Let X = L2(R) and Y = R, and consider the linear operators Au =
∫
R u(x)dx

with densely defined domain D(A) = C∞c (R). Then A is not closable. Indeed, fix f ∈ D(A)
and for each k ∈ N set

fk(x) = k−1f(x/k)

and note that

‖fk‖2L2(R) = k−1

∫
R
f(y)2dy → 0

as k →∞, but that

Afk =

∫
R
f(x)dx

for all k. By the above Lemma, it follows that (D(A), A) does not have a closed extension.
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Thankfully for us, it turns out that nearly every operator encounters in practical applica-
tions is closable. Neverthtless, the above example should serve as a warning that closability
is still something one has to check.

With the above notions in mind, we now provide a necessary condition for a given
operator A to generate a C0 semigroup.

Proposition 1. Suppose that A is the generator of a C0-semigroup on a Banach space X.
Then the operator A is closed and the domain D(A) is dense in X.

Proof. Suppose that A is the infinitesimal generator of a C0-semigroup {T (t)}t≥0. We first
verify that the its domain D(A), as defined in Definition 2, is dense in X. To this end, I
claim that for every f ∈ X and t > 0 that∫ t

0
T (s)f dx ∈ D(A).

To see this, observe that if h > 0 then(
T (h)− I

h

)∫ t

0
T (s)f ds =

1

h

∫ t

0
(T (s+ h)− T (s)) f ds

=
1

h

(∫ t+h

h
T (s)f ds−

∫ t

0
T (s)f ds

)
=

1

h

∫ t+h

t
T (s)f ds− 1

h

∫ h

0
T (s)f ds.

Since Theorem 2 implies the function t 7→ T (t)f ∈ X is a continuous function on (0,∞), it
follows that

lim
h→0+

(
T (h)− I

h

)∫ t

0
T (s)f ds = T (t)f − f

which, since the limit exists, verifies the claim. Using again that the continuity of the
semigroup we now see that

f = lim
h→0+

1

h

∫ h

0
T (t)f dt

for every f ∈ X, from which the density of D(A) in X follows.
To see that A is closed, let fn ∈ D(A) be a sequence with fn → f ∈ D(A) and Afn → g

in X. Recalling that Theorem 2 implies

d

dt
(T (t)fn) = T (t)Afn

for each n, it follows by the Fundamental Theorem of Calculus that

T (h)fn − fn =

∫ h

0
T (s)Afn ds

13



which, taking n→∞, implies

T (h)f − f =

∫ h

0
T (s)g ds.

Multiplying by 1
h and again taking h→ 0+, it follows as above that f ∈ D(A) and that

Af = lim
h→0+

T (h)f − f
h

= lim
h→0+

1

h

∫ h

0
T (s)g ds = g,

as desired.

Next, we wish to complement the necessary conditions in Proposition 1 with sufficient
conditions. For this, we need to consider the invertibility of a given linear operator.

Definition 4. Let A : D(A) ⊂ X → X be a closed linear operator on a Banach space X
with dense domain D(A). We define the resolvent set of A to be

ρ(A) = {λ ∈ C : (λI −A) : D(A)→ X is a bijection} .

Furthermore, for each λ ∈ ρ(A) we define the resolvent operator

Rλ(A) = (λI −A)−1 : X → X.

With the above, we are now able to give a necessary and sufficient condition for a
given operator A to be generate a C0-semigroup on X. This is provided by the famous
HIlle-Yosida Theorem.

Theorem 3 (Hille-Yosida). Let A be a linear operator on a Banach space X. Then A is
the generator of a C0-semigroup on X if and only if the following conditions hold:

(i) D(A) is dense in X and A is a closed operator.

(ii) There exists an ω ∈ R such that (ω,∞) ⊂ ρ(A), and

‖Rλ(A)‖ ≤ 1

λ− ω
, for all λ > ω.

In this case the associated semigroup {T (t)}t≥0 is ω-contractive, i.e. it satisfies

‖T (t)‖ ≤ eωt

for all t ≥ 0.

14



A proof of Theorem 3 is given in the Appendix. Note the necessity of (i) follows from
Proposition 1. To motivate the necessity of (ii), suppose that A generates a C0-semigroup
{T (t)}t≥0 on X which is ω-contractive and note for each g ∈ X that the unique solution of

du

dt
= Au

u(0) = g

is given by u(t) = T (t)g. Taking the Laplace transform in t of the above IVP gives

λũ(λ)− g = Aũ(λ),

where ũ(λ) =
∫∞

0 u(t)e−λtdt denotes the Laplace transform of u, which, recalling that
‖T (t)‖ ≤ eωt, is well-defined for all λ > ω. It follows that IF λ > ω and IF λ ∈ ρ(A) then
we have

(λI −A)ũ(λ) = g, i.e. ũ(λ) = Rλ(A)g,

which, by uniquness, implies

Rλ(A)g =

∫ ∞
0

e−λtT (t)g dt. (7)

Using that T (t) is ω-contractive, it would then follow that

‖Rλ(A)g‖X ≤ ‖g‖X
∫ ∞

0
e(ω−λ)tdt =

‖g‖X
λ− ω

,

for all λ > ω and g ∈ X. Of course, to make the above rigorous we must show that
(ω,∞) ⊂ ρ(A) and that the identity (7) holds. This, along with the sufficiency of conditions
(i)-(ii) in Theorem 3, will be established in the Appendix.

Equipped with Theorem 3, we can now use semigroup methods to solve linear evolution
equations. This is demonstrated in the next section, where we consider a generalized wave
equation.

2.3 Application: Linear Hyperbolic PDE

Let Ω ⊂ Rn be open and bounded with smooth boundary, and let

Lu = −
n∑

i,j=1

(
ai,juxi

)
xj

be uniformly elliptic on Ω with ai,j = aj,i ∈ C1(Ω) being time independent. Now, fix T > 0
and consider the linear hyperbolic IVBVP

utt + Lu = 0, x ∈ Ω, t ∈ (0, T )

u = 0 on ∂Ω× [0, T )

u = g, ut = h on Ω× {t = 0},
(8)
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for g, h ∈ L2(Ω) fixed. In order to approach this via semigroup theory, we first rewrite (8)
as the equivalent first order system(

u
v

)
t

=

(
v
−Lu

)
=

(
0 1
−L 0

)
︸ ︷︷ ︸

=:A

(
u
v

)
(9)

with boundary conditions {
u = 0 on ∂Ω× [0, T )

u = g, v = h on Ω× {t = 0},

and we consider the above dynamical system on the infinite dimensional phase space

X = H1
0 (Ω)× L2(Ω)

with norm

‖(u, v)‖ :=
(
B[u, u] + ‖v‖2L2(Ω)

)1/2
,

where B is the bilinaer form associated to L. In particular, we consider the operator
A : X → X as an densely defiend linaer operator with domain

D(A) =
(
H2(Ω)×H1

0 (Ω)
)
×H1

0 (Ω).

Using Hille-Yosida, we can establish the existence of classical (in time) solutions of (9) when
(g, h) ∈ D(A).

Theorem 4. The operator A defined above generates a C0-semigroup on X.

Proof. The strategy is to verify the hypotheses of Hille-Yosida. Note that D(A) is clearly
dense in X. To see that A is closed, suppose {(uk, vk)} is a sequence in D(A) such that

(uk, vk) → (u, v) ∈ X and A

(
uk
vk

)
→
(
f1

f2

)
in X. Clearly then we have vk → v in

L2(Ω) and, by the definition of A, vk → f1 in H1
0 (Ω). By uniqueness of limits, it follows that

v = f1 so that, in particular, v ∈ H1
0 (Ω). Further, observe by elliptic (boundary) regularity

theory8 that

‖uk − u`‖H2(Ω) ≤ C
(
‖Luk − Lu`‖L2(Ω) + ‖uk − u`‖L2(Ω)

)
.

Since uk → u in H1
0 (Ω) and Luk → −f2 in L2(Ω), it follows from above that the sequence

{uk} is Cauchy in H2(Ω) and hence, by uniqueness of limits, we have uk → u in H2(Ω) ∩
H1

0 (Ω). Thus, (u, v) ∈ D(A) and

A

(
u
v

)
=

(
v
−Lu

)
=

(
f1

f2

)
.

8See, for example, Theorem 4 in Section 6.3.2 in Evans.
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It follows that A is a closed operator, as desired.
It remains to study the resolvent of A. To this end, let λ > 0 and (f, g) ∈ X be given

and consider the equation

λ

(
u
v

)
−A

(
u
v

)
=

(
f
g

)
. (10)

Note the above is equivalent to the system{
λu− v = f

λv + Lu = g
(11)

with (u, v) ∈ D(A) which, in turn, is equivalent to the scalar equation

Lu+ λ2u = λf + g, u ∈ H2(Ω) ∩H1
0 (Ω). (12)

Now, recall from elliptic existence theory that the operator L has strictly positive spectrum.
Since λ2 > 0, it follows that (12) has a unique solution u ∈ H2(Ω) ∩H1(Ω) which, setting

v = λu− f ∈ H1
0 (Ω), (13)

it follows that (u, v) ∈ D(A) is the unique weak solution of (10). Since (f, g) ∈ X and
λ > 0 was arbitrary, it follows that (0,∞) ∈ ρ(A). Furthermore, note that from the second
equation in (11) that

λ‖v‖2L2(Ω) +B[u, v] = 〈g, v〉L2(Ω) ,

where here

(
u
v

)
= Rλ(A)

(
f
g

)
. It follows that

λ‖(u, v)‖2X = λ
(
‖v‖2L2(Ω) +B[u, u]

)
= 〈g, v〉2L2(Ω) +B[u, λu− v]

= 〈g, v〉2L2(Ω) +B[u, f ],

where the last equality follows from (13). Recalling the inner-product structure on X and
using Cauchy-Schwartz, it follows that

λ‖(u, v)‖2X =

〈(
u
v

)
,

(
f
g

)〉
X

≤ ‖(u, v)‖X‖(f, g)‖X

and hence

‖(u, v)‖X ≤
1

λ
‖(f, g)‖X , i.e. ‖Rλ(A)‖ ≤ 1

λ
for all λ > 0.

The result now follows from the Hille-Yosida theorem.
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By the above theorem, it follows that for all (g, h) ∈ D(A) the linear hyperbolic IVBVP
(9) admits a classical solution, i.e. it admits a solution

(u, v) ∈ C([0,∞);D(A)) ∩ C1((0,∞);X)

such that (u(t), v(t)) ∈ D(A) for all t ≥ 0 and it satisfies (9) pointwise for all t > 0.
Furthermore, note that this solution is unique. Indeed, define the energy

E(t) =
1

2

∫
Ω

v2 +
n∑

i,j=1

ai,juxiuxj

 dx

and note that for (u, v) as above we have E ∈ C1(0,∞) with

E′(t) =

∫
Ω
v (vt + Lu) dx = 0 for all t > 0.

It follows that if (u, v)(0) = (0, 0) then E(t) = 0 for all t > 0, and hence the unique solution
of (9) is (u, v) = (0, 0). By linearity, it follows that classical (in the above sense) solutions
of (9) are unique.

Before continuing, we point out that there are other sets of necessary and sufficient
conditions for a given linear operator to be the generator of a C0-semigroup. One commonly
used result on Hilbert spaces is the following.

Theorem 5 (Lumer-Phillips). Let H be Hilbert space and let A be a linear operator on H
that satisfies the following conditions:

(i) D(A) is dense in X.

(ii) There exists a constant ω ∈ R such that Re 〈x,Ax〉 ≤ ω‖x‖2 for all x ∈ H.

(iii) There exists a λ0 > ω such that λ0I −A is surjective.

Then A is the generator of a C0-semigroup on X which is ω-contractive.

From Lumer-Phillips, it is evident that any self-adjoint operator whose spectrum is
bounded from above generates a C0-semigroup. Similarly, any skew-adjoint operator gen-
erates a C0-semigroup of contractions. As an exercise, students should attempt to reprove
Theorem 4 above using Lumer-Phillips.

3 Nonlinear Evolution Equations

So far, the application of semigroup methods has been restricted to the case of linear
operators. This is of course natural since, by construction, semigroups are designed as a
tool to solve linear equations. However, recalling our general methodologies from Chapter
4 (on fixed point methods), it makes sense that such techniques may be combined with
appropriate fixed point theorems in order to provide tools for studying nonlinear equations.
This is precisely the goal of this section! As a first step, however, we must study how
semigruop methods can be extended to nonhomogeneous linear problems.
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3.1 Nonhomogeneous Linear Problems & Mild Solutions

Let X be a Banach space and suppose A : D(A) ⊂ X → X is a linear operators. Our goal
is to consider nonhomogeneous linear IVPs of the form{

ut = Au+ f(t), t > 0

u(0) = u0
(14)

where here u0 ∈ X and f ∈ C(R;X) are given. As in previous sections, given u0 ∈ D(A)
we say u is a classical solution of (14) if

u ∈ C([0,∞);D(A)) ∩ C1((0,∞);X)

and u satisfies (14) pointwise for all t ∈ R.
To begin, note that if A generates a C0-semigroup {T (t)}t≥0 on X, then any classical

solution of (14) can be represented as

u(t) = T (t)u0 +

∫ t

0
T (t− s)f(s)ds. (15)

Indeed, for fixed t > 0 define for s ∈ [0, t] the function g(s) = T (t− s)u(s) and note that

dg

ds
= −AT (t− s)u(s) + T (t− s)du

ds
(s)

= −AT (t− s)u(s) + T (t− s) (Au(s) + f(s))

= T (t− s)f(s)

so that, by the Fundamental Theorem of Calculus,

g(t) = g(0) +

∫ t

0
T (t− s)f(s)ds,

which is equivalent to (15). Note that (15) is simply an abstract version of the well-known
Duhamel (or variational of constants) formula from elementary ODE.

Now, one can easily check that if A ∈ L(X), so that {T (t)}t≥0 is a uniformly continuous
semigroup of operators on X, then u defined by (15) is a classical solution of the nonho-
mogeneous IVBVP (14). Unfortunately, however, if A only generates a C0-semigroup, then
(15) may not define a function u(t) that is differentiable at any t > 0, even if f ∈ C(R;X).
This is illustrated in the following example.

Example: Let {T (t)}t≥0 be a C0-semigroup on a Banach space X with generator A :
D(A) ⊂ X → X, and suppose there exists9 a g0 ∈ X such that T (t)g0 /∈ D(A) for all t > 0.
Taking f(t) = T (t)g0 and u0 = 0 in (15) we obtain the function

u(t) =

∫ t

0
T (t− s)T (s)g0 ds.

9Think of the wave equation, for example. The hyperbolic nature of the equation implies propagation of
singularities, implying solutions can only be as smooth as the initial data.
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By the semigroup property, the above is equivalent to

u(t) =

∫ t

0
T (t)g0 ds = tT (t)g0

which is clearly continuous in t, but not differentiable at any t > 0 since T (t)g0 is differen-
tiable at t0 if and only if T (t0)g0 ∈ D(A). Indeed, note that for all h > 0 we have

T (t0 + h)g0 − T (t0)g0

h
=
T (h)T (t0)g0 − T (t0)g0

h

so that the limit as h→ 0+ above exists if and only if T (t0)g0 ∈ D(A), as claimed.

Remark 1. Note that for parabolic PDE, the associated semigroups satisfy T (t)g ∈ D(A)
for all t > 0 and or any g ∈ X. These are examples of so-called “analytic” semigroups,
which are extremely important in applications but not be discussed here.

While the above example shows that the representation formula (15) may not always
define a classical solution of the IVP (14), it is true that every classical solution must be
represented in the form (15). Furthermore, we note that the representation formula (15)
makes sense under the much weaker hypotheses that u0 ∈ X and f ∈ L1(0,∞);X), and
that, even under these weaker assumptions, u(t) defined in (15) is still in C([0,∞);X) and
satisfies the initial condition u(0) = u0. With this in mind, we make the following definition.

Definition 5. Suppose that A generates a C0-semigroup on a Banach space X. Given
u0 ∈ X and f ∈ L1((0,∞);X) the function u(t) defined in (15) is called a mild solution of
the IVP (14).

Following our general methodology of this class, we will henceforth consider mild so-
lutions as actual “solutions” of (14). Of course, it is natural to ask when a mild solution
actually corresponds to a classical solution of (14). Such a regularity result is the content
of the following result.

Theorem 6. Suppose that A generates a C0-semigroup on a Banach space X. Assume that
u0 ∈ D(A) f ∈ C([0,∞);X) and that, additionally, f satisfies either

(i) f ∈W 1,1((0,∞);X)

or

(ii) f ∈ L1((0,∞);D(A)).

Then (15) defines a function u ∈ C1((0,∞);X) which a classical solution of (14).

For a proof of this result, see Theorem 2 in Section 9.2(c) in McOwen or Theorem 12.16
in Section 12.1.3 in Renardy and Rogers. In summary, we have that if A generates a C0-
semigroup {T (t)}t≥0 on a Banach space X, then given any f ∈ C([0,∞);X) and u0 ∈ X
the formula (15) provides a mild solution of the nonhomogeneous IVP (14) which, under
appropriate additional assumptions on u0 and f , actually solves the IVP classically.
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3.2 Mild Solutions of Nonlinear Problems

Our next goal is to use the theory developed in the previous section in conjunction with the
Contraction Mapping Theorem to study the existence of solutions to nonlinear evolution
equations. To this end, let X be a Banach space and suppose A : D(A) ⊂ X → X is a
closed, densely defined linear operator on X. Consider the nonlinear IVP{

ut = Au+ f(u), t > 0

u(0) = u0,
(16)

where here u0 ∈ X and f : X → X is a continuous, possibly nonlinear, map. In the study
of such equations, there are at least four key issues to address.

(i) Local Existence: Show there exists a unique solution for t ∈ (0, τ), provided that
τ > 0 is sufficiently small.

(ii) Global Existence vs. Blow Up: Does the local solution exist for all t > 0, or does it
have some finite time of existence T > 0? If T <∞, what happens when t→ T−?

(iii) Continuous Dependence: Does the solution depend continuously on u0?

(iv) Asymptotic Properties: What happens to global solutions when t→∞?

Note that each of the above issues typically requires analysis specifically designed for the
particular nonlinear dynamics involved. In particular, people working on different classes
of PDEs (such as Hamiltonian, dissipative, hyperbolic, etc.) will likely have different tech-
niques for addressing each of the above issues. Nevertheless, we can derive some general
results for (i) and (ii) above that can be fine-tuned for specific applications.

To begin, suppose A generates a C0-semigroup {T (t)}t≥0 on X. From our work in the
previous section, we know that if (16) admits a classical solution u then it must satisfy the
implicit integral equation

u(t) = T (t)u0 +

∫ t

0
T (t− s)f(u(s))ds (17)

for the entire time of existence. With this in mind, we say that any solution u ∈ C([0, τ);X)
of (17) is a mild solution of (16) for t ∈ [0, τ ]. We now establish the following fundamental
local existence and uniqueness result.

Theorem 7. Let X be a Banach space and let f : X → X be locally Lipschitz, i.e. for all
R > 0 there exists a constant M = M(R) > 0 such that

‖f(u)− f(v)‖X ≤M‖u− v‖X for all ‖u‖X , ‖v‖X ≤ R.

If A is the generator of a C0-semigroup on X, then for all u0 ∈ X there exists tmax ∈ (0,∞]
such that the IVP {

ut = Au+ f(u), t > 0

u(0) = u0
(18)
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has a unique mild solution u ∈ C([0, tmax);X). Moreover, if tmax <∞ then we necessarily
have

lim
t→t−max

‖u(t)‖X =∞.

Proof. Without loss of generality, assume that A generates a C0-semigroup of contractions
{T (t)}t≥0. For each finite τ > 0, define

Y = C([0, τ ];X)

equipped with the natural norm

‖u‖Y = max
0≤t≤τ

‖u(t)‖X

and note that (Y, ‖ · ‖Y ) is a Banach space. Now, fix u0 ∈ X and consider the nonlinear
map F : Y → Y defined by

F (u)(t) = T (t)u0 +

∫ t

0
T (t− s)f(u(s))ds

and note that a mild solution of the IVP (18) on [0, τ ] corresponds to a fixed point of F in
Y .

To prove that F has a fixed point in Y , we aim to use the Contraction Mapping Theorem.
To this end, let R = 2‖u0‖X and define the ball

WR := {u ∈ Y : ‖u‖Y < R} .

Given u ∈ WR, it follows that for all t ∈ [0, τ ] we have by the triangle inequality and the
assumption that ‖T (t)‖ ≤ 1 the bound

‖F (u)(t)‖X ≤ ‖T (t)u0‖X +

∫ t

0
‖T (t− s)f(u(s))‖Xds

≤ ‖u0‖X +

∫ t

0
‖f(u(s))‖Xds

Since f is locally Lipschitz, we know that

‖f(z)‖X ≤ ‖f(z)− f(0)‖X + ‖f(0)‖X ≤M‖z‖X + ‖f(0)‖X

for all z ∈ X, and hence, combining with the above estimate, we have that

‖F (u)(t)‖X ≤ ‖u0‖X + τ (MR+ ‖f(0)‖X)

for all u ∈WR and t ∈ [0, τ ]. Similarly, for all u, v ∈WR and t ∈ [0, τ ] we have

‖F (u)(t)− F (v)(t)‖X ≤
∫ t

0
‖T (t− s) (f(u(s))− f(v(s)))‖X ds

≤M
∫ t

0
‖u(s)− v(s)‖Xds

≤Mτ‖u− v‖Y .
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Setting

τ1 := min

{
R− ‖u0‖X

MR+ ‖f(0)‖X
,

1

2M

}
it follows that taking τ = τ1 above we have that F : WR → WR and that F is a strict
contraction on WR. By the Contraction Mapping Theorem, it follows there exists a unique
u ∈ WR = WR(τ1) such that F (u) = u. By construction, this fixed point corresponds to a
mild solution of the IVP (18) on the time interval [0, τ1].

Note by above that the mild solution u on [0, τ1] can be extended to a mild solution on
[0, τ1 + τ2] for some τ2 > 0 by defining u(t) = w(t) on [τ1, τ1 + τ2] where w(t) solves

w(t) = T (t− τ1)u(τ1) +

∫ t

τ1

T (t− s)f(w(s))ds

for τ1 ≤ t ≤ τ1 + τ2. Notice that τ2 = τ2(‖u(τ2)‖X , ‖f(u(τ2))‖X). Continuing to extend the
mild solution u as above, can define [0, tmax) to be the maximal interval of existence of the
mild solution u of the IVP.

Next, I claim that if tmax < ∞, then limt→t−max
‖u(t)‖X = ∞. If this were false, then

there would exist a sequence of times {tn}∞n=1 with tn ↗ tmax and ‖u(tn)‖X ≤ C for all
n ∈ N. By above, it would follow that for all n sufficiently large then u defined on [0, tn]
could be extended to [0, tn + δ] where now, since the C > 0 above is uniform in n, the
δ > 0 can be chosen independent of n. Thus, u could be extended beyond tmax, which is a
contradiction. This verifies the “blow-up” alternative.

Finally, it remains to establish uniqueness of the mild solution. Suppose that u and v
are both mild solutions of the IVP with initial data u0, v0 ∈ X, respectively. Then so long
as both u(t) and v(t) are defined we have

‖u(t)− v(t)‖X ≤ ‖T (t)(u0 − v0)‖X +

∫ t

0
‖T (t− s) (f(u(s))− f(v(s))) ‖Xds

≤ ‖u0 − v0‖X + M̃

∫ t

0
‖u(s)− v(s)‖Xds

for some constant M̃ > 0. By Gronwall’s inequality10 it follows that if both u(t) and v(t)
exist for t ∈ [0, T ] then we have

‖u(t)− v(t)‖X ≤ eM̃(T−t)‖u0 − v0‖X for all t ∈ [0, T ].

Uniquenss now follows on any closed subset [0, T ] of times for which both u(t) and v(t)
exist. Thus, if u0 = v0 then u and v have the same tmax and u(t) = v(t) for all t ∈ [0, tmax),
completing the proof.

Before we continue, we establish some important remarks. First, note by the blow-up
alternative that if one can establish an a-priori bound of the form

‖u(t)‖X ≤ K
10See, for example, Appendix B in Evans.
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for the time of existence of a solution u, it follows from above that the mild solutions will
necessarily be global, i.e. they will have tmax =∞. The development of such a-priori bounds
can be quite delicate, and often relies on subtle energy estimates. Secondly, the above proof
can be modified to show that if in fact the function f were globally Lipschitz on X, then
the mild solutions will again exist globally in time: see the exercises. We further note that
if the nonlinearity f in Theorem 7 is C1(X;X), then mild solutions with u0 ∈ D(A) are in
fact classical solutions.

Finally, I wish to emphasize that in most PDE applications, even the local Lipschitz
property for f fails to hold on all of X. In the next section, we apply the general local
existence and uniqueness result in Theorem 7 to one of the most commonly studied PDEs
in mathematical physics and, in particular, we will see how the lack of Lipschitz continuity
of f on the entire Banach space X can be handled.

3.3 Application: Cubic Nonlinear Schrödinger Equation on R3

Consider the following initial value problem for the cubic Nonlinear Schrödinger equation
posed on R3: {

iut = −∆u+ k|u|2u, u > 0, x ∈ R3

u(0) = u0

(19)

where here u : R3 × [0,∞) → C, k = ±1 is a constant, and u0 is some initial data. Note
that the PDE in (19) can be rewritten in the abstract form

ut = Au+ f(u), t > 0

where here A : L2(R)→ L2(R) is the linear operator A = i∆ with densely defined domain
D(A) = H2(R3) and f(u) = −ik|u|2u.

Lemma 4. The operator A generates a C0-semigroup of contractions on L2(R3).

“Proof”. We will prove this by applying the Hille-Yosida theorem. To this end, first note
that since

∆ : H2(R3) ⊂ L2(R3)→ L2(R3)

is closed and densely defined, so is A. Furthermore, using the Fourier transform one can
show that11

σ(A) =
{
ik2 : k ∈ R

}
⊂ Ri

so that, specifically, (0,∞) ⊂ ρ(A). Furthermore, for all λ > 0 and g ∈ L2(R3), note that if

u = Rλ(A)g, i.e. if (A− λI)u = g,

11Indeed, the Fourier transform maps differential operator in the spatial domain to multiplication operators
in the frequency domain. In this context, we have ∆̂f(k) = −k2f̂(k). Since the Fourier transform is an
isometry of L2(R3), it follows that the spectrum of ∆ is given by σ(−k2·), where here the operator −k2· is a
multiplication operator on L2(R3). Since the spectrum of a multiplication operator with a piecewise strictly
monotone “symbol” (in this case, the symbol is −k2) is simply the range of the symbol, the result follows.
For more details, take Math 890 and Math 960.
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then multiplying by ū and integrating gives

λ

∫
R3

|u|2dx = −i
∫
R3

|Du|2dx−
∫
R3

ūg dx.

Since λ ∈ R, taking the real parts of the above identity and using Cauchy-Schwartz yields

λ

∫
R3

|u|2dx ≤ ‖u‖L2(R3)‖g‖L2(R3)

which is clearly equivalent to

‖Rλ(A)g‖L2(R3) ≤
‖g‖L2(R3)

λ
.

The Lemma now follows from Hille-Yosida.

Remark 2. Alternatively, one can prove the above result using Stone’s Theorem, which
states that if A is closed, densely defined and self-adjoint operator on a Hilbert space H,
then the operator iA is the generator of a unitary group {eiAt}t∈R of operators on L2(R3).
For details, see Math 960.

To be able to invoke our general local existence result in Theorem 7, it remains to study
the nonlinearity f(u) = −ik|u|2u on L2(R3). First, note that for a given u ∈ L2(R3) the
function f(u) does not even make sense in L2(R3). Indeed, recalling k = ±1 we clearly have

‖f(u)‖L2(R3) = ‖u‖L6(R3),

so that f is note even defined, let alone Lipschitz continuous, on L2(R3). Note, however,
that since 2 > 3

2 we know from Sobolev Embedding that

D(A) = H2(R3) ⊂ L∞(R3)

and that, in particular, this embedding is continuous. It follows that for u ∈ D(A) we have

‖f(u)‖2L2(R3) =

∫
R3

|u|6dx ≤ ‖u‖4L∞(R3)

∫
R3

|u|2dx ≤ ‖u‖6H2(R3)

so that the mapping f : D(A) → L2(R3) is well-defined. The next result shows that, in
fact, f is locally Lipschitz continuous as a map from D(A) into itself.

Lemma 5. The function f : H2(R3) → H2(R3) given by f(u) = −ik|u|2u is well-defined.
Furthermore, there exists a constant C > 0 such that

‖f(u)− f(v)‖H2(R3) ≤ C
(
‖u‖2H2(R3) + ‖v‖2H2(R3)

)
‖u− v‖H2(R3).

for all u, v ∈ H2(R3).
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Proof. We have already seen that f : H2(R3)→ L2(R3) is well-defined. Given u ∈ H2(R3),
we now refine this result to show that f(u) ∈ H2(R3). To this end, observe that

‖Df(u)‖2L2(R3) ≤
∫
R3

|D(ūu)|2 |u|2dx+

∫
R3

|u|4|Du|2dx

≤
(∫

R3

|D(ūu)|4dx
)1/2(∫

R3

|u|4dx
)1/2

+ ‖u‖4L∞(R3)

∫
R3

|Du|2dx.

Now, since H2(R3) is continuously embedded in W 1,4(R3) by Sobolev embedding, we know
there exists a constant C > 0 such that

‖u‖L4(R3) ≤ C‖u‖H2(R3)

and similarly, using the product rule,

‖D(ūu)‖L4(R3) ≤ 2‖u‖L∞(R3)‖Du‖L4(R3) ≤ C‖u‖2H2(R3).

All together it follows that if u ∈ H2(R3) then

‖Df(u)‖2L2(R3) ≤ C‖u‖
6
H2(R3)

for some constant C > 0. Finally, note that

‖D2f(u)‖2L2(R3) ≤
∫
R3)

(
|D2(ūu)|2|u|2 + 2|D(ūu)|2|Du|2 + |u|4|D2u|2

)
dx.

Using similar calculations to above, we can estimate the last two terms as∫
R3

|u|2|D2u|2dx ≤ ‖u‖4L∞(R3)‖D
2u‖2L2(R3) ≤ C‖u‖

6
H2(R3)

and ∫
R3

|D(ūu)|2|Du|2dx ≤
(∫

R3

|D(ūu)|4
)1/2(∫

R3

|Du|4dx
)1/2

≤ C‖u‖6H2(R3).

For the final term observe that∫
R3

|D2(ūu)|2|u|2dx ≤
∫
R3)

(
2|D2u|2|u|4 + |Du|4|u|2

)
dx

≤ C
(
‖u‖4L∞(R3)‖D

2u‖2L2(R3) + ‖u‖2L∞(R3)‖Du‖
4
L4(R3)

)
≤ C‖u‖6H2(R3).

All together, the above calculations show that

‖f(u)‖H2(R3) ≤ C‖u‖3H2(R3) for all u ∈ H2(R3).
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so that, in particular, the map

f : H2(R3)→ H2(R3)

is well-defined.
The calculations to show that f is in fact Lipschitz continuous from D(A) into itself are

similar. For example, given u, v ∈ H2(R3) we have

‖f(u)− f(v)‖L2(R3) =
∥∥|u|2u− |v|2v∥∥

L2(R3)

=
∥∥|u|2(u− v) + (|u|2 − |v|2)v

∥∥
L2(R3)

=
∥∥|u|2(u− v) + |u− v|(|u|+ |v|)v

∥∥
L2(R3)

which, by Cauchy-Schwartz, gives

‖f(u)− f(v)‖L2(R3) ≤ ‖u‖2L4(R3)‖u− v‖L2(R3)

+ ‖u− v‖L2(R3)

(
‖u‖L4(R3)‖v‖L4(R3) + ‖v‖2L4(R3)

)
≤ C

(
‖u‖2H2(R3) + ‖v‖2H2(R3)

)
‖u− v‖L2(R3),

where the last inequality follows by Sobolev embedding. The remaining inequalities are left
as an exercise.

Unfortunately, since the map f is not locally Lipschitz continuous on all of L2(R2), the
local existence and uniquness result in Theorem 7 does not apply to the IVP (19) posed
on L2(R3). However, observe that the domain D(A) = H2(R3) equipped with the standard
H2 norm is clearly a Banach space. Furthermore, since D(A) ⊂ L2(R3) we clearly have
from Lemma 4 that

T (t) : D(A)→ D(A)

and that {T (t)}t≥0 defines a C0-semigroup on the Banach space D(A). Since Lemma 5
implies f is Locally lipschitz continuous on D(A), we immediately obtain the following
local existence result.

Theorem 8 (Local Existence for Cubic NLS). For every u0 ∈ H2(R3) there exists a unique
classical solution u of the IVP (19) defined for all t ∈ [0, Tmax) with the property that either
Tmax =∞ or else

lim
t→T−max

‖u(t)‖H2(R3) =∞.

Consequently, for either the focusing (k < 0) or defocusing (k > 0) NLS, the IVP
(19) has a unique local solution for all initial data in H2(R3). We now attempt to find
conditions under which local solutions exists globally in time. In the defocusing case, we
have the following result guaranteeing global existence.
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Proposition 2. Let u0 ∈ H2(R3) and let u(t) be the unique solution of the IVP (19)
defined on [0, T ). If k > 0, i.e. in the ase of the defocusing NLS, then ‖u(t)‖H2(R3) is
bounded uniformly in time on [0, T ).

The proof of Proposition 2 is primarily based on studying the conservation laws of the
(19). However, we also require the following technical result.

Lemma 6. Let {T (t)}t≥0 be the C0-semigroup on L2(R3) generated by the operator A = i∆
in (19). If 2 ≤ p ≤ ∞ and 1

p + 1
q = 1, then T (t) can be uniquely extended to a bounded

linear operator
T (t) ∈ L

(
Lq(R3);Lp(R3)

)
with

‖T (t)u0‖Lp(R3) ≤ (4πt)−(2/q−1)‖u0‖Lq(R3).

Proof. Since we already know T (t) is a C0-semigroup of contractions on L2(R3), we clearly
have the bound

‖T (t)u0‖L2(R3) ≤ ‖u0‖L2(R3)

for all u0 ∈ L2(R3). Further, using the Fourier transform, we obtain an explicit formula for
T (t) acting on L2(R3):

(T (t)u) (x) =
1

4πit

∫
R3

ei|x−y|
2/4tu(y)dy

and hence, for u ∈ L1(R3) ∩ L2(R3) we find

‖T (t)u‖L∞(R3) ≤ (4πt)−1‖u‖L1(R3).

The result now follows by Lp-interpolation and the fact that L2(R3) ∩ Lp(R3) is dense in
Lp(R3) for all p ∈ (2,∞].

“Proof” of Of Proposition 2. To see that the H2-norm of u(t) is bounded, note that since
the solution u satisfies the integral equation (15) it follows that

‖u(t)‖H2(R3) ≤ ‖T (t)u0‖H2(R3) +

∫ t

0
‖T (t− s)f(u(s))‖H2(R3) ds

≤ ‖u0‖H2(R3) +

∫ t

0
‖u(s)‖2L∞(R3)‖u(s)‖H2(R2)ds,

where the last inequality follows since T (t) is a semigroup of contractions on L2(R3). It
follows that if we can prove a uniform bound like

‖u(t)‖L∞(R3) ≤ K (20)

for all t ∈ [0, T ) then by Gronwall’s inequality12 we would have

‖u(t)‖H2(R3) ≤ ‖u0‖H2(R3)

(
1 +K2tek

2t
)

12See Appendix B.k in Evans.
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valid for all t ∈ [0, T ), providing the desired uniform bound on ‖u(t)‖H2(R3).
It thus remains to obtain a uniform L∞-bound of the for (20). To this end, I first claim

that ‖u(t)‖H1(R3) is bounded on [0, T ). Indeed, multiply the PDE

iut = −∆u+ k|u|2u

by ū and integrating gives

i

2

∫
R3

d

dt
|u|2dx =

∫
R3

|Du|2dx+ k

∫
R3

|u|4dx.

Taking real parts gives13

d

dt
‖u(t)‖L2(R3) = 0

so that ‖u(t)‖L2(R3) = ‖u0‖L2(R3) for all t ∈ [0, T ). Similarly, multiplying the PDE by dū
dt

and integrating gives14

d

dt

(
1

2

∫
R3

|Du|2dx+
k

4

∫
R3

|u|4dx
)

= 0.

Since k > 0, it follows that
d

dt

∫
R3

|Du|2dx ≤ 0

for all t ∈ (0, T ) so that, in particular,

0 ≤
∫
R3

|Du|2dx ≤
∫
R3

|Du0|2dx

for all t ∈ [0, T ). Together with the L2-conservation above, it follows that ‖u(t)‖H1(R3) is
uniformly bounded on [0, T ), as claimed.

Next, recall by the Gagliardo-Nirenberg-Sobolev inequality that for all p ∈ [2,∞) there
exists a constant C = Cp > 0 such that

‖v‖Lp(R3) ≤ C‖v‖H1(R3)

for all v ∈ H1(R3). In particular, it follows by above that ‖u(t)‖Lp(R3) is uniformly bounded
on [0, T ) for every p ∈ [2,∞). Fixing p ∈ (2,∞) and using again that u satisfies the integral
equation (15) it follows that

Du(t) = T (t)Du0 −
∫ t

0
T (t− s)Df(u(s))ds

13This is just conservation of mass.
14This is actually equivalent to conservation of energy in this case.
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and hence, using the GNS inequality and Lemma 6, we have

‖Du‖Lp(R3) ≤ C‖T (t)Du0‖H2(R3) +

∫ t

0
‖T (t− s)Df(u(s))‖Lp(R3) ds

≤ C‖Du0‖H2(R3) + C

∫ t

0
(t− s)1−2/q

∥∥|u(s)|2|Du(s)|
∥∥
Lq(R3)

ds,

where here q = p
p−1 . Now, notice that by Hölder’s inequality that

∥∥|u|2|Du|∥∥
Lq(R3)

≤ ‖u‖2Lr(R3)‖Du‖L2(R3), r =
4p

p− 2

and that both factors on the right hand side above have already been shown to be uniformly
bounded on [0, T ). Thus, for all t ∈ [0, T ) we have

‖Du(t)‖Lp(R3) ≤ C
(
‖Du0‖H2(R3) +

∫ t

0
(t− s)1−2/qds

)
.

Now, note that
∫ t

0 (t−s)1−2/qds is finite provided that 1− 2
q > −1, i.e. provided q = p

p−1 > 1,
which clearly holds here since p > 2. It follows that ‖u(t)‖W 1,p(R3) is uniformly bounded on
[0, T ) and hence, since W 1,p(R3) is continuously embedded in L∞(R3) for all p ∈ [2,∞) by
Sobolev embedding, it follows that there exist a constant K > 0 such that

‖u(t)‖L∞(R3) ≤ K

for all t ∈ [0, T ). By the above work, this completes the proof.

Equipped with Proposition 2, we immediately obtain the following result establishing
the global existence of solutions of the defocusing NLS.

Theorem 9 (Global Existence for Cubic Defocusing NLS). Consider the defocusing NLS,
given by

iut = −∆u+ |u|2u, u > 0, x ∈ R3 (21)

For each u0 ∈ H2(R3), there exists a unique solution

u ∈ C([0,∞);H2(R3)) ∩ C1((0,∞);L2(R2))

of (21) satisfying u(0) = u0.

With more work, one can in fact prove that the Cauchy problem for the cubic defocusing
NLS (21) is globally well-posed on H2(R3) which, among other things, implies continuous
dependence of solutions on the initial data. It should also be noted that huge amounts of
research have been devoted to showing well-posedness properties of NLS Cauchy problems
in Hs(R3) for as as small as possible (typically one tries to get s = −|α| for |α| as large
as possible). Notice the above arguments, which are based on conservation of the L2-norm
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and the “energy” immediately fail in this case since such quantities are no longer even
well-defined. In such cases, more advanced tools are needed, which we will not touch upon
here.

Finally, we note that while Theorem 8 local existence of H2(R3) solutions holds for both
k = ±1, global existence generally fails for the focusing case k = −1. However, recall that
the L2-norm and the “energy”

E(t) =
1

2

∫
R3

|Du|2dx+
k

4

∫
R3

|u|4dx

are both conserved quantities (for the time of existence) for H2 solutions of the NLS. Thus,
using the Garliardo-Nirenberg-Sobolev inequality∫

R3

|u|4dx ≤ C̃
(∫

R3

|u|2dx
)(∫

R3

|Du|2dx
)

(22)

we find that for any local H2-solution u(t) of (19) with k = −1 and u(0) = u0 ∈ H2(R3)
satisfies

1

2
‖u(t)‖2H1(R3) =

1

2
‖u(t)‖2L2(R3) + E(u(t)) +

1

4

∫
R3

|u(t)|4dx

≤ 1

2
‖u0‖2L2(R3) + E(u0) +

C̃

4
‖u0‖2L2(R3)‖u(t)‖2H1(R3),

and hence (
1− C̃

2
‖u0‖2L2(R3)

)
‖u(t)‖2H1(R3) ≤ ‖u0‖2L2(R3) + 2E(u0)

for all t ∈ [0, tmax). Thus, if the initial data u0 ∈ H2(R3) is chosen with sufficiently small
L2-norm, then the above calculations yield a uniform bound on ‖u(t)‖H1(R3) valid for the
entire time of existence of the solution. Following the proof of Theorem 2, one can now
prove that ‖u(t)‖H2(R3) is also uniformly bounded for all t ∈ [0, tmax), which leads us to the
following result.

Theorem 10 (Global Existence for Focusing Cubic NLS). If u0 ∈ H2(R3), then the IVP{
iut = −∆u− |u|2u, u > 0, x ∈ R3

u(0) = u0

(23)

for the focusing NLS has a unique global solution

u ∈ C([0,∞);H2(R3)) ∩ C1((0,∞);L2(R3))

provided that

‖u0‖L2(R3) <
2

C̃
,

where C̃ > 0 is the sharp constant in the Gagliardo-Nirenberg-Sobolev inequality (22).
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Of course, it is now natural to ask what happens for larger initial data. Does blow-
up necessarialy happen? Are there sufficient conditions that either guarantee or prevent
blow up? Also, one can attempt to redo the above theory with more general classes of
nonlineartiies, such as power-nonlinearities of the form

f(u) = k|u|p−1|u|, p > 1

or even for more general nonlineartiies which are not homogeneous. While these are all
interesting and fun questions to consider, this seems as good of a place as any to stop.

4 Exercises

Complete the following exercises.

1. Consider the operator

A : C1(0, 1) ⊂ L2(0, 1)→ L2(0, 1)

defined by Af = f ′. Prove that A is not closed. Furthermore, find an appropriate
domain D(A) for which the operator

A : D(A) ⊂ L2(0, 1)→ L2(0, 1)

is indeed a closed operator. Prove your claim.

2. For each t ≥ 0 define the operator T (t) : L2(R) → R by T (t)u(x) = u(x + t). Prove
that {T (t) : t ≥ 0} defines a C0-semigroup on L2(R), and determine its generator A
and D(A).

3. Justify equation (24) in the proof of Hille-Yosida. That is, using the fact that A is a
closed operator, show that

AR̃(λ)f =

∫ ∞
0

e−λtAT (t)f dt.

4. Use the Lumer Phillips Theorem to provide an alternative proof of Theorem 4.

5. Show that if the function f in Theorem 7 is globally Lipschitz on X, then the unique
mild solutions constructed there exist globally in time, i.e. they have tmax =∞.

6. Complete the proof of Lemm 5.
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5 Appendix: Proof of Hille-Yosida Theorem

In this appendix, we give a proof of the HIlle-Yosida theorem Theorem 3, which we state
again here for completeness.

Theorem 11 (Hille-Yosida). Let A be a linear operator on a Banach space X. Then A is
the generator of a C0-semigroup on X if and only if the following conditions hold:

(i) D(A) is dense in X and A is a closed operator.

(ii) There exists an ω > 0 such that (ω,∞) ⊂ ρ(A), and

‖Rλ(A)‖ ≤ 1

λ− ω
, for all λ > ω.

Proof. We begin by proving that the conditions (i)-(ii) are necessary. To this end, suppose
that A is the infinitesimal generator of a C0-semigroup {T (t)}t≥0 which is ω-contractive for
some ω > 0, and recall from Proposition 1 that we have already seen that (i) holds for A.
We now show that (ω,∞) ⊂ ρ(A). Recall from the discussion directly after Theorem 3 that
once this is established it we immediately obtain the desired resolvent bound.

To this end, observe that since T (t) is ω-contractive, given any f ∈ X the Laplace
transform of T (t)f , defined as

R̃(λ)f :=

∫ ∞
0

e−λtT (t)f dt

is well-defined for all λ > ω. I claim that R̃(λ)f ∈ D(A) for all λ > ω and f ∈ X. To see
this, note that for h > 0, using similar considerations as in the proof of Proposition 1, we
have(

T (h)− 1

h

)
R̃(λ)f =

1

h

∫ ∞
h

e−λ(t−h)T (t)f dt− 1

h

∫ ∞
0

e−λtT (t)f dt

=
1

h

∫ ∞
0

(
e−λ(t−h) − e−λt

)
T (t)f dt− 1

h

∫ h

0
e−λ(t−h)T (t)f dt

=

(
eλh − 1

h

)∫ ∞
0

e−λtT (t)f dx− eλh

h

∫ h

0
e−λtT (t)f dt

Taking h→ 0+ it follows that R̃(λ)f ∈ D(A) and, in fact,

AR̃(λ)f = lim
h→0+

(
T (h)− 1

h

)
R̃(λ)f = λR̃(λ)f − f.

Rearranging, we have
(λI −A) R̃(λ)f = f
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for all f ∈ X and λ > ω. It follows that (λI −A) is surjective for all λ > ω. To see that it
is injective, note that if f ∈ D(A) then15

AR̃(λ)f =

∫ ∞
0

e−λtAT (t)f dt =

∫ ∞
0

e−λtT (t)Af dt = R̃(λ)Af (24)

so that, in particular,
R̃(λ) (λI −A) f = f

for all f ∈ D(A). Taking f = 0, which clearly lies in D(A), it follows that

(λI −A)f = 0 ⇒ R̃(λ)(λI −A)f = 0 ⇒ f = 0

and hence that (λI −A) is injective. Recalling the above holds for all λ > ω, it follows that
(0,∞) ⊂ ρ(A) and, in particular,

Rλ(f) = R̃(λ)f

for all f ∈ X and λ > ω. As in the discussion immediately following the statement of
Theorem 3, it immediately follows that for all f ∈ X we have

‖Rλ(f)f‖X ≤ ‖f‖X
∫ ∞

0
e(ω−λ)tdt =

‖f‖X
λ− ω

,

as desired.

To finish the proof of Theorem 3, it remains to prove that the sufficiency of (i)-(ii). To
this end, note we can assume ω = 0 since, if A satisfies (i)-(ii) above, then A− ωI satisfies
(i)-(ii) with ω = 0. Equivalently, simply observe that substitution u = eωtv transforms the
evolution equation ut = Au to vt = (A − ωI)v. In any case, we now suppose that A is a
linear operator on X satisfying (i)-(ii) with ω = 0 and prove that A is the generator for some
C0-semigroup on X. Of course, it is tempting to simply define T (t) = eAt via the series
definition (1) and be done. We know this is impossible, however, since the series (1) does
not converge in L(X) unless A ∈ L(X). To get around this, we first regularize the operator
A, i.e. we define a sequence of approximating bounded linear bounded linear operators, for
which the series formula (1) makes sense, that converge to A in some appropriate limiting
sense.

To this end, for each λ > 0 define the operator Aλ on X by

Aλ := λARλ(A)

and note that Aλ ∈ L(X) since

(λI −A)Rλ(A) = I ⇒ ARλ(A) = λRλ(A)− I. (25)

15Here, moving A through the integral is justified since A is a closed operator. See the exercises.
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Note that, formally, we have Aλ = λA
λI−A which, as λ→∞, should converge to A. To make

this rigorous, let f ∈ D(A) and note that since ‖Rλ‖ ≤ 1
λ we have that

ARλ(A)f = Rλ(A)Af → 0 as λ→∞.

Recalling (25), it follows that for all f ∈ D(A) we have

lim
λ→∞

λRλ(A)f → f

and hence for all f ∈ D(A) we have

Aλf = λARλ(A)f = λRλ(A)Af → Af (26)

as λ→∞, as desired.
Now, fix λ > 0 and define for all t ≥ 0 the linear linear operator

Tλ(t) := eAλt

which, recalling (25), can be represented as

Tλ(t) = e−λteλ
2tRλ(A) = e−λt

∞∑
k=0

(λ2t)k

k!
Rλ(A)k.

In particular, note that since ‖Rλ‖ ≤ 1
λ this implies that

‖Tλ(t)‖ ≤ e−λt
∞∑
k=0

(λt)k

k!
= 1

so that for each λ > 0 the family {Tλ(t)}t≥0 is a C0-semigroup of contractions on X with
generator Aλ and D(Aλ) = X.

I now claim that for each fixed t ≥ 0 and f ∈ D(A), the sequence {Tλ(t)f}λ>0 is Cauchy
in X. To see this, note that for all λ, µ > 0 and f ∈ X we have by the Fundamental Theorem
of Calculus that

Tλ(t)f − Tµ(t)f =

∫ t

0

d

ds
[Tµ(t− s)Tλ(s)f ] ds

=

∫ t

0
Tµ(t− s)Tλ(s) [Aλf −Aµf ] ds,

where the last equaltiy follows by the product rule and the fact that the operators Aµ and
Aλ commute. In particular, using that ‖Tλ‖ ≤ 1 for all λ > 0 and (26), it follows that

‖Tλ(t)f − Tµ(t)f‖X ≤ t ‖Aλf −Aµf‖X → 0

as µ, λ→∞ for all f ∈ D(A). Therefore, for all t ≥ 0 we can define the operator

T (t) : D(A)→ X
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by
T (t)f := lim

λ→∞
Tλ(t)f.

Note that since ‖Tλ(t)‖ ≤ 1, the density of D(A) in X implies that the above limit in fact
exists for all u ∈ X, uniformly in t on compact subsets of [0,∞). Indeed, if g ∈ X and fn
is a sequence in D(A) with fn → g in X as n→∞, note for all λ, µ > 0 that

‖Tλ(t)g − Tµ(t)g‖X ≤ ‖Tλ(t)g − Tλ(t)fn‖X + ‖Tλ(t)fn − Tµ(t)fn‖X
+ ‖Tµ(t)fn − Tµ(t)g‖X
≤ 2‖g − fn‖X + t‖Aλfn −Aµfn‖X .

Thus, the domain of the operator T (t) defined above can be extended to all of X, as claimed.
Similarly, it is readily checked that {T (t)}t≥0 is a C0-semigroup of contractions on X.

It remains to show that A is the generator for {T (t)}t≥0. To this end, let

B :=
d

dt
T (t)

∣∣
t=0

be the generator for {T (t)}t≥0 and note for all f ∈ D(A), t > 0 and λ > 0 that

Tλ(t)f − f
t

=
1

t

∫ t

0

d

ds
Tλ(s)f ds =

1

t

∫ t

0
Tλ(s)Aλf ds.

Taking λ→∞ above gives

T (t)f − f
t

=
1

t

∫ t

0
T (s)Af ds

for all t > 0 and f ∈ D(A), and now taking t→ 0+ we find that

Bf = lim
t→0+

1

t

∫ t

0
T (s)Af ds = Af.

It follows that Bf = Af for all f ∈ D(A), and hence that D(A) ⊂ D(B). For the reverse
inclusion, note that16

(0,∞) ⊂ ρ(A) ∩ ρ(B)

so that for all λ > 0 we have

D(B) = (λI −B)−1(X) = (λI −B)−1(λI −A)(D(A)) = D(A),

where the last equality follows since A = B on D(A). Thus, A = B as claimed, which
completes the proof.

16This follows by assumption on A and the fact that B is known to be the generator for a C0-semigroup
of contractions.
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We end by noting that from above we the semigroup generated by A can be written as

T (t) = lim
λ→∞

e−λt
∞∑
k=0

(λ2t)k

k!
Rλ(A)k,

which in some sense gives us a way of approximating the semigroup through a series of
powers of the resolvent. It should be pointed out that there are several other ways of
representing the semigroup generated by A, each of which has specific merit and uses. For
example, one can show that if A generates a C0-semigroup on X then

T (t) = lim
n→∞

(
1− t

n
A

)−n
,

which corresponds using the implicit Euler scheme

u(t+ h)− u(t)

h
= Au(t+ h)

to try to solve the evolution equation ut = Au. Additional analytical methods, including
using Laplace transforms or Cauchy’s integral formula, provide more alternative ways of
constructing semigroups and which are useful in various contexts.
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